
T H E U N I V E R S I T Y
 L I V E R P OO L

Fortran 90 Course Notes

| | |

AC Marshall with help from JS Morgan and JL Schonfelder.

Thanks to Paddy O'Brien.

cUniversity of Liverpool, 1997

Contents

1 Introduction to Computer Systems 1

1.1 What is a Computer? : 1

1.2 What is Hardware and Software? : 2

1.3 Telling a Computer What To Do : 3

1.4 Some Basic Terminology : 3

1.5 How Does Computer Memory Work? : 4

1.6 Numeric Storage : 5

2 What Are Computer Programs 5

2.1 Programming Languages : 5

2.2 High-level Programming Languages : 6

2.3 An Example Problem : 6

2.4 An Example Program : 6

2.5 Analysis of Temperature Program : 7

2.5.1 A Closer Look at the Speci�cation Part : 8

2.5.2 A Closer Look at the Execution Part : 8

2.6 How to Write a Computer Program : 9

2.7 A Quadratic Equation Solver : 9

2.7.1 The Problem Speci�cation : 9

2.7.2 The Algorithm : 10

2.7.3 The Program : 10

2.8 The Testing Phase : 11

2.8.1 Discussion : 11

2.9 Software Errors : 12

2.9.1 Compile-time Errors : 12

2.9.2 Run-time Errors : 13

2.10 The Compilation Process : 13

2.11 Compiler Switches : 14

3 Introduction 16

3.1 The Course : 16

i

4 Fortran Evolution 16

4.1 A Brief History of Fortran 77 : 16

4.2 Drawbacks of Fortran 77 : 18

4.3 New Fortran 90 Features : 19

4.4 Advantages of Additions : 21

5 Language Obsolescence 21

5.1 Obsolescent Features : 22

5.1.1 Arithmetic IF Statement : 22

5.1.2 ASSIGN Statement : 22

5.1.3 ASSIGNed GOTO Statement : 22

5.1.4 ASSIGNed FORMAT Statement : 23

5.1.5 Hollerith Format Strings : 23

5.1.6 PAUSE Statement : 23

5.1.7 REAL and DOUBLE PRECISION DO-loop Variables : : : : : : : : : : : : : : : : 23

5.1.8 Shared DO-loop Termination : 24

5.1.9 Alternate RETURN : 24

5.1.10 Branching to an END IF : 24

5.2 Undesirable Features : 24

5.2.1 Fixed Source Form : 25

5.2.2 Implicit Declaration of Variables : 25

5.2.3 COMMON Blocks : 25

5.2.4 Assumed Size Arrays : 25

5.2.5 EQUIVALENCE Statement : 25

5.2.6 ENTRY Statement : 25

6 Object Oriented Programming 25

6.1 Fortran 90's Object Oriented Facilities : 27

6.1.1 Data Abstraction : 27

6.1.2 Data Hiding : 28

6.1.3 Encapsulation : 28

6.1.4 Inheritance and Extensibility : 28

ii

6.1.5 Polymorphism : 28

6.1.6 Reusability : 29

6.2 Comparisons with C++ : 29

7 Fortran 90 Programming 30

7.1 Example of a Fortran 90 Program : 30

7.2 Coding Style : 32

8 Language Elements 33

8.1 Source Form : 33

8.2 Free Format Code : 33

8.3 Character Set : 34

8.4 Signi�cant Blanks : 35

8.5 Comments : 36

8.6 Names : 37

8.7 Statement Ordering : 37

9 Data Objects 40

9.1 Intrinsic Types : 40

9.2 Literal Constants : 41

9.3 Implicit Typing : 41

9.4 Numeric and Logical Declarations : 42

9.5 Character Declarations : 42

9.6 Constants (Parameters) : 43

9.7 Initialisation : 44

9.8 Examples of Declarations : 45

10 Expressions and Assignment 47

10.1 Expressions : 47

10.2 Assignment : 47

10.3 Intrinsic Numeric Operations : 48

10.4 Relational Operators : 49

10.5 Intrinsic Logical Operations : 50

10.6 Intrinsic Character Operations : 51

iii

10.6.1 Character Substrings : 51

10.6.2 Concatenation : 51

10.7 Operator Precedence : 52

10.8 Precedence Example : 53

10.9 Precision Errors : 54

11 Control Flow 56

11.1 IF Statement : 57

11.2 IF Construct : 58

11.3 Nested and Named IF Constructs : 61

11.4 Conditional Exit Loops : 62

11.5 Conditional Cycle Loops : 63

11.6 Named and Nested Loops : 64

11.7 DO ... WHILE Loops : 65

11.8 Indexed DO Loop : 65

11.8.1 Examples of Loop Counts : 67

11.9 Scope of DO Variables : 68

11.10SELECT CASE Construct : 68

12 Mixing Objects of Di�erent Types 71

12.1 Mixed Numeric Type Expressions : 71

12.2 Mixed Type Assignment : 72

12.3 Integer Division : 73

13 Intrinsic Procedures 74

13.1 Type Conversion Functions : 75

13.2 Mathematical Intrinsic Functions : 76

13.3 Numeric Intrinsic Functions : 77

13.4 Character Intrinsic Functions : 80

14 Simple Input / Output 81

14.1 PRINT Statement : 81

14.2 READ Statement : 83

iv

15 Arrays 84

15.1 Array Terminology : 85

15.2 Declarations : 85

15.3 Array Conformance : 87

15.4 Array Element Ordering : 89

15.5 Array Syntax : 90

15.6 Whole Array Expressions : 91

15.7 Visualising Array Sections : 92

15.8 Array Sections : 94

15.9 Printing Arrays : 95

15.10Input of Arrays : 96

15.10.1Array I/O Example : 96

15.11Array Inquiry Intrinsics : 97

15.12Array Constructors : 98

15.13The RESHAPE Intrinsic Function : 99

15.14Array Constructors in Initialisation Statements : 101

15.15Allocatable Arrays : 102

15.16Deallocating Arrays : 102

15.17Masked Assignment | Where Statement : 104

15.18Masked Assignment | Where Construct : 104

15.19Vector-valued Subscripts : 107

16 Selected Intrinsic Functions 109

16.1 Random Number Intrinsic : 109

16.2 Vector and Matrix Multiply Intrinsics : 110

16.3 Maximum and Minimum Intrinsics : 112

16.4 Array Location Intrinsics : 113

16.5 Array Reduction Intrinsics : 114

17 Program Units 121

17.1 Main Program Syntax : 122

17.1.1 Main Program Example : 123

v

17.2 Procedures : 123

17.3 Subroutines : 124

17.4 Functions : 125

17.5 Argument Association : 127

17.6 Local Objects : 127

17.7 Argument Intent : 128

17.8 Scope : 129

17.8.1 Host Association : 129

17.8.2 Example of Scoping Issues : 130

17.9 SAVE Attribute : 132

17.10Keyword Arguments : 133

17.11Optional Arguments : 134

17.11.1Optional Arguments Example : 134

18 Procedures and Array Arguments 136

18.1 Explicit-shape Arrays : 136

18.2 Assumed-shape Arrays : 137

18.3 Automatic Arrays : 138

18.4 SAVE Attribute and Arrays : 139

18.5 Explicit Length Character Dummy Arguments : 139

18.6 Assumed Length Character Dummy Arguments : 140

18.7 Array-valued Functions : 140

18.8 Character-valued Functions : 141

18.9 Side E�ect Functions : 142

18.10Recursive Procedures : 143

18.10.1Recursive Function Example : 144

18.10.2Recursive Subroutine Example : 144

19 Object Orientation 145

19.1 Stack Simulation Example : 145

19.1.1 Stack Example Program : 146

19.2 Reusability | Modules : 147

vi

19.3 Restricting Visibility : 150

19.4 The USE Renames Facility : 151

19.5 USE ONLY Statement : 152

20 Modules 152

20.1 Modules | General Form : 153

21 Pointers and Targets 156

21.1 Pointer Status : 157

21.2 Pointer Declaration : 157

21.3 Target Declaration : 158

21.4 Pointer Manipulation : 158

21.5 Pointer Assignment : 159

21.5.1 Pointer Assignment Example : 159

21.6 Association with Arrays : 160

21.7 Dynamic Targets : 162

21.8 Automatic Pointer Attributing : 162

21.9 Association Status : 164

21.10Pointer Disassociation : 164

21.11Pointers to Arrays vs. Allocatable Arrays : 165

21.12Practical Use of Pointers : 165

21.13Pointers and Procedures : 167

21.14Pointer Valued Functions : 167

21.15Pointer I / O : 169

22 Derived Types 169

22.1 Supertypes : 170

22.2 Derived Type Assignment : 171

22.3 Arrays and Derived Types : 172

22.4 Derived Type I/O : 173

22.5 Derived Types and Procedures : 173

22.6 Derived Type Valued Functions : 174

22.7 POINTER Components of Derived Types : 176

vii

22.8 Pointers and Lists : 177

22.8.1 Linked List Example : 178

22.9 Arrays of Pointers : 181

23 Modules | Type and Procedure Packaging 184

23.1 Derived Type Constructors : 185

23.2 Generic Procedures : 186

23.3 Generic Interfaces | Commentary : 187

23.4 Derived Type I/O : 188

23.5 Overloading Intrinsic Procedures : 188

23.6 Overloading Operators : 190

23.6.1 Operator Overloading Example : 190

23.7 De�ning New Operators : 192

23.7.1 De�ned Operator Example : 192

23.7.2 Precedence : 194

23.8 User-de�ned Assignment : 194

23.8.1 De�ned Assignment Example : 194

23.8.2 Semantic Extension Example : 195

23.8.3 Yet Another Example : 196

23.8.4 More on Object Oriented Programming by J. S. Morgan : : : : : : : : : : : : 200

23.9 Semantic Extension Modules : 205

23.9.1 Semantic Extension Example : 205

24 Complex Data Type 209

24.1 Complex Intrinsics : 210

25 Parameterised Intrinsic Types 215

25.1 Integer Data Type by Kind : 216

25.2 Constants of Selected Integer Kind : 216

25.3 Real KIND Selection : 217

25.4 Kind Functions : 217

25.5 Expression Evaluation : 218

25.6 Logical KIND Selection : 218

viii

25.7 Character KIND Selection : 219

25.8 Kinds and Procedure Arguments : 220

25.9 Kinds and Generic Interfaces : 220

26 More Intrinsics 226

26.1 Bit Manipulation Intrinsic Functions : 226

26.2 Array Construction Intrinsics : 227

26.2.1 MERGE Intrinsic : 228

26.2.2 SPREAD Intrinsic : 229

26.2.3 PACK Intrinsic : 229

26.2.4 UNPACK Intrinsic : 230

26.3 TRANSFER Intrinsic : 231

27 Input / Output 233

27.1 OPEN Statement : 233

27.2 READ Statement : 235

27.3 WRITE Statement : 236

27.4 FORMAT Statement / FMT= Speci�er : 236

27.5 Edit Descriptors : 237

27.6 Other I/O Statements : 238

28 External Procedures 240

28.1 External Subroutine Syntax : 241

28.1.1 External Subroutine Example : 242

28.2 External Function Syntax : 242

28.2.1 Function Example : 243

28.3 Procedure Interfaces : 244

28.3.1 Interface Example : 246

28.4 Required Interfaces : 246

28.5 Procedure Arguments : 247

28.5.1 The INTRINSIC Attribute : 247

28.5.2 The EXTERNAL Attribute : 248

28.5.3 Procedure Arguments Example : 249

ix

29 Object Initialisation 250

29.1 DATA Statement : 250

29.1.1 DATA Statement Example : 250

29.2 Data Statement | Implied DO Loop : 251

30 Handling Exceptions 252

30.1 GOTO Statement : 252

30.1.1 GOTO Statement Example : 252

30.2 RETURN and STOP Statements : 253

31 Fortran 95 254

31.1 Rationale (by Craig Dedo) : 254

31.1.1 FORALL : 254

31.1.2 Nested WHERE Construct : 255

31.1.3 PURE Procedures : 255

31.1.4 Elemental Procedures : 255

31.1.5 Improved Initialisations : 255

31.1.6 Automatic Deallocation : 255

31.1.7 New Initialisation Features : 256

31.1.8 Remove Conicts With IEC 559 : 256

31.1.9 Minimum Width Editing : 257

31.1.10Namelist : 257

31.1.11CPU TIME Intrinsic Subroutine : 257

31.1.12MAXLOC and MINLOC Intrinsics : 257

31.1.13Deleted Features : 257

31.1.14New Obsolescent Features : 258

31.1.15Language Tidy-ups : 258

32 High Performance Fortran 258

32.1 Compiler Directives : 259

32.2 Visualisation of Data Directives : 260

33 ASCII Collating Sequence 265

x

References 266

xi

Module 1:
Fundamentals Of Computer

Programming

1 Introduction to Computer Systems

1.1 What is a Computer?

The following schematic diagram gives the layout of a Personal Computer (PC), most single user
systems follow this general design:

VDU

Disc drive

CPU

Main memory

Keyboard

The components perform the following tasks:

2 CPU (Central Processor Unit) | does the `work', fetches, stores and manipulates values
that are stored in the computers memory. Processors come in all di�erent `shapes and sizes' |
there are many di�erent types of architectures which are suited to a variety of di�erent tasks.
We do not consider any particular type of CPU is this course.

2 Main memory (RAM | Random Access Memory) | used to store values during
execution of a program. It can be written to and read from at any time.

1

2 1. Introduction to Computer Systems

2 Disc drive (hard or oppy) | `permanently' stores �les (programs and data). Hard discs
are generally located inside the machine and come in a variety of di�erent sizes and speeds.
They do not, in fact, store �les permanently | they often go wrong and so must undergo a
back-up at regular intervals. The oppy disc drive allows a user to make his or her own back
up of important �les and data. It is very important to keep back-ups. Do not be caught out |
you may well lose all your work!

2 Keyboard | allows user to input information. Nowadays, most keyboards have more or less
the same functionality.

2 VDU (Visual Display Unit) | visually outputs data. There are numerous types of VDU
di�ering in the resolution (dots per inch) and the number of colours that can be represented.

2 Printer | allows a hard copy to be made. Again, there are many di�erent types of printers
available, for example, line printers, dot-matrix printers, bubble jet printers and laser printers.
These also di�er in their resolution and colour palette.

The last four are known as peripheral devices.

A good PC could contain:

2 Intel Pentium P166 CPU

2 32MBytes RAM (main memory)

2 2.1GByte hard disc

2 SVGA monitor

2 IBM PC keyboard

In addition a system may include,

2 printer, for example, an HP LaserJet

2 soundcard and speakers

2 CD ROM drive (Read Only Memory)

2 SCSI (`scuzzy') disc (fast),

2 oppy disc drive (for backing up data)

2 network card

1.2 What is Hardware and Software?

A computer system is made up from hardware and software.

Hardware is the physical medium, for example:

2 circuit boards

2 processors

September 2, 1997 University of Liverpool

1.3. Telling a Computer What To Do 3

2 keyboard

A piece of software is a computer program, for example:

2 an operating system

2 an editor

2 a compiler

2 a Fortran 90 program

The software allows the hardware to be used. Programs vary enormously in size and complexity.

1.3 Telling a Computer What To Do

To get a computer to perform a speci�c task it must be given a sequence of unambiguous instructions
or a program.

We meet many examples of programs in everyday life, for example, instructions on how to assemble a
bedside cabinet. These instructions are generally numbered, meaning that there is a speci�c order to
be followed, they are also (supposed to be) precise so that there is no confusion about what is intended:

1. insert the spigot into hole `A',

2. apply glue along the edge of side panel,

3. press together side and top panels

4. attach toggle pin `B' to gromit `C'

5. ... and so on

If these instructions are not followed `to the letter', then the cabinet would turn out wonky.

1.4 Some Basic Terminology

It is necessary to cover some terminology. Hopefully, much of it will be familiar | you will hear many
of the terms used throughout the course.

2 Bit is short for Binary Digit. Bits have value of 1 or 0, (or on or o�, or, true or false),

2 8 Bits make up 1 Byte,

1024 Bytes make up 1 KByte (1 KiloByte or 1K), (\Why 1024?" I hear you ask. Because
210 = 1024.

1024 KBytes make up 1 MByte (1 MagaByte or 1M),

1024 MBytes make up 1 GByte (1 GigaByte or 1G),

2 all machines have a wordsize| a fundamental unit of storage, for example, 8-bits, 16-bits, etc.
The size of a word (in Bytes) di�ers between machines. A Pentium based machine is 32-bit.

Fortran 90 Course Notes File: CourseNotes.ps

4 1. Introduction to Computer Systems

2 a op is a oating point operation per second. A oating point operation occurs when two real
numbers are added. Today, we talk of megaops or even gigaops.

2 parallel processing occurs when two or more CPUs work on solution of the same problem at
the same time.

1.5 How Does Computer Memory Work?

In this hypothetical example, wordsize is taken to be 8-bits:

3F29 3F2A

3F2B 3F2C

1 0 1 0 1 1 1 0

A computers memory is addressable. Each location is given a speci�c `number' which is often repre-
sented in hexadecimal [base-16], for example, 3F2C. (Hexadecimal digits are as follows: 0, 1, 2, 3, ...,
9, A, B, C, D, E, F, 10, 11, ..., 19, 1A, 1B, ..., 1F, 20, ...). The CPU is able to read to and write from
a speci�ed memory location at will. Groups of memory locations can be treated as a whole to allow
more information to be stored. Using the cryptic hexadecimal identi�ers for memory locations is very
awkward so Fortran 90 allows (English) names to be used instead, this allows programs to make sense
to a casual reader.

Even when the computer has just been turned on, each memory location will contain some sort of
`value'. In this case the values will be random. In the general case the values will be those that remain
from the previous program that used the memory. For this reason it is very important to initialise
memory locations before trying to use the values that they are storing.

All CPUs have an instruction set (or language) that they understand. Eventually all Fortran 90
programs must be translated (or compiled) into instructions from this set. Roughly speaking, all
processors have the same sort of instructions available to them. The CPU can say things like, `fetch
me the contents of memory location 3F2C' or `write this value to location 3AF7'. This is the basis of
how all programs work.

Consider the following sequence of assembler code instructions:

LDA '3F2C' load (fetch) the contents of 3F2C
ADD '3F29' add to this the contents of 3F29
STO '3F2A' store the value in location 3F2A

The sequence of instructions, which is meant only for illustrative purposes, e�ectively adds two numbers
together and stores the result in a separate memory location. Until 1954 when the �rst dialect of Fortran
was developed, all computer programs were written using assembler code. It was John Backus, then
working for IBM, who proposed that a more economical and e�cient method of programming their
computer should be developed. The idea was to design a language that made it possible to express
mathematical formulae in a more natural way than that currently supported by assembler languages.
The result of their experiment was Fortran (short for IBM Mathematical Formula Translation System).

This new language allowed the above assembler instructions to be written less cryptically as, for
example:

K = I + J

September 2, 1997 University of Liverpool

1.6. Numeric Storage 5

A compiler would then translate the above assignment statement into something that looks like the
assembler code given above.

1.6 Numeric Storage

In general, there are two types of numbers used in Fortran 90 programs INTEGERs (whole numbers)
and REALs (oating point numbers).

INTEGERs are stored exactly, usually in range (-32767,32767), however, they are not stored in the
format hinted at in the previous section but in a special way that allows addition and subtraction to
be performed in a straightforward way.

REALs are stored approximately and the space they occupy is partitioned into a mantissa and an
exponent. (In the following number: 0:31459� 101, the mantissa is 0:31459 and the exponent is 1.)
In a REAL number, the exponent can only take a small range of values | if the exponent is expected
to be large then it may be necessary to use a numeric storage unit that is capable of representing larger
values, for example DOUBLE PRECISION values.

It is possible for a program to throw a numeric exception such as overow which occurs when
number is outside of supported range (for example, a real number where exponent is too big) or
underow which is the opposite, the number is too close to zero for representation (for example, a
real number where the exponent is too small).

In Fortran 90, the KIND mechanism allows the user to specify what numeric range is to be supported.
This allows programs to be numerically portable. Di�erent computer systems will allow numbers of
di�ering sizes to be represented by one word. It is possible that when a program has been moved from
one computer system to another, it may fail to execute correctly on the new system because underow
or overow exceptions are generated. The KIND mechanism combats this serious problem.

CHARACTERs variables are stored di�erently.

2 What Are Computer Programs

2.1 Programming Languages

Computers only understand binary codes so the �rst programs were written using this notation. This
form of programming was soon seen to be extremely complex and error prone so assembler languages
were developed. Soon it was realised that even assembler languages could be improved on. Today, a
good programming language must be:

2 totally unambiguous (unlike natural languages, for example, English | `old women and men
suck eggs', does this mean that men or old men suck eggs?).

2 expressive | it must be fairly easy to program common tasks,

2 practical | it must be an easy language for the compiler to translate,

2 simple to use.

All programming languages have a very precise syntax (or grammar). This will ensure that a
syntactically-correct program only has a single meaning.

Fortran 90 Course Notes File: CourseNotes.ps

6 2. What Are Computer Programs

2.2 High-level Programming Languages

Assembler code is a Low-Level Language. It is so-called because the structure of the language
reects the instruction set (and architecture) of the CPU. A programmer can get very close to the
physical hardware. Low-level languages allow very e�cient use of the machine but are di�cult to use.

Fortran 90, Fortran 77, ADA, C and Java are examples ofHigh-Level Languages. They provide a
much higher degree of abstraction from the physical hardware. They also allow for portable programs
to be written, i.e., programs that will run on a variety of di�erent systems and which will produce the
same results regardless of the platform. As well as having the above bene�ts, high-level languages are
more expressive and secure and are much quicker to use than low-level languages. In general, however,
a well written assembler program will run faster than a high-level program that performs the same task.

At the end of the day, an executable program that runs on a CPU must still be represented as a
series of binary digits. This is achieved by compiling (translating) a high-level program with a special
piece of software called a compiler. Compilers are incredibly complicated programs that accept other
programs as input and generate a binary executable object �le as output.

2.3 An Example Problem

Consider the following problem which is suitable for solution by computer.

To convert from oF (Fahrenheit) to oC (Centigrade) we can use the following formula:

c = 5� (f � 32)=9

To convert from oC to K (Kelvin) we add 273.

A speci�cation of the program could be that it would prompt the user for a temperature expressed in
degrees Fahrenheit, perform the necessary calculations and print out the equivalent temperatures in
Centigrade and Kelvin.

2.4 An Example Program

A program which follows the above speci�cation is given below.

PROGRAM Temp_Conversion

IMPLICIT NONE

INTEGER :: Deg_F, Deg_C, K

PRINT*, "Please type in the temp in F"

READ*, Deg_F

Deg_C = 5*(Deg_F-32)/9

PRINT*, "This is equal to", Deg_C, "C"

K = Deg_C + 273

PRINT*, "and", K, "K"

END PROGRAM Temp_Conversion

This program, in this case, called Temp.f90, can be compiled using the NAg v2.2 Fortran 90 compiler.
The compiler is invoked on the Unix command line as follows:

September 2, 1997 University of Liverpool

2.5. Analysis of Temperature Program 7

chad2-13{adamm} 26> f90 Temp.f90

NAg Fortran 90 compiler v2.2. New Debugger: 'dbx90'

If the program has been written exactly as above then there will not be any error messages (or diag-
nostics). (The case where a program contains mistakes will be covered later.) The compiler produces
executable code which is stored (by default) in a �le called a.out. It is possible to give this �le a
di�erent name, this is discussed later. The executable �le can be run by typing its name at the Unix
prompt:

chad2-13{adamm} 27> a.out

Please type in the temp in F

45

This is equal to 7 C

and 280 K

The program will start executing and will print out Please type in the temp in F on the screen,
the computer will then wait for a value to be entered via the keyboard. As soon as the required input
has been supplied and the Return key pressed, the program will continue. Almost instantaneously, the
equivalent values in Centigrade and Kelvin will appear on the screen.

2.5 Analysis of Temperature Program

The code is delimited by PROGRAM ... END PROGRAM statements, in other words these two lines mark
the beginning and end of the code. Between these lines there are two distinct areas.

2 Speci�cation Part

This is the area of the program that is set aside for the declarations of the named memory locations
(or variables) that are used in the executable area of the program. As well as supplying variable
names, it is also necessary to specify the type of data that a particular variable will hold. This
is important so that the compiler can work out how store the value held by a variable. It is also
possible to assign an initial values to a variable or specify that a particular memory location holds
a constant value (a read-only value that will not change whilst the program is executing). These
techniques are very useful.

2 Execution Part

This is the area of code that performs the useful work. In this case the program does the
following:

1. prompts the user for input,

2. reads input data (Deg F),

3. calculates the temperature in oC,

4. prints out this value,

5. calculates the temperature in Kelvin and

6. prints out this value.

Fortran 90 Course Notes File: CourseNotes.ps

8 2. What Are Computer Programs

2.5.1 A Closer Look at the Speci�cation Part

There are a couple more points that should be raised. The IMPLICIT NONE statement should always

be present in every Fortran 90 program unit. Its presence means that all variables mentioned in the
program must be declared in the speci�cation part. A common mistake whilst coding is to mistype a
variable name, if the IMPLICIT NONE statement is not present then the compiler will assume that the
mistyped variable name is a new, hitherto unmentioned, variable and will use whatever value happened
to be in the memory location that the variable refers to. An error such as this caused the US Space
Shuttle to crash.

The third line of the program declares three INTEGER (whole number) variables, there are a number of
other variable types that can be used in di�erent situations:

2 REAL | real numbers, i.e., no whole numbers, e.g., 3:1459, 0:31459� 101. REAL variables can
hold larger numbers than INTEGERs.

2 LOGICAL | can only take one of two vaules: .TRUE. or .FALSE.,

2 CHARACTER | contains single alphanumeric character, e.g., 'a',

2 CHARACTER(LEN=12)| contains 12 alphanumeric characters. A number of consecutive alphanu-
meric characters are known as a string,

2 user de�ned types | combination of the above (see later).

Fortran 90 is not case sensitive. K is the same as k.

2.5.2 A Closer Look at the Execution Part

Let us now look at the part of the program that does the actual `work'.

2 PRINT*, "Please type in the temp in F"| writes the string (between the quotes) to the
VDU screen,

2 READ*, Deg F | reads a value from the keyboard and assigns it to the INTEGER variable Deg F,

2 Deg C = 5*(Deg F-32)/9 | this is an assignment statement. The expression on the
RHS is evaluated and then assigned to the INTEGER variable Deg C. This statement contains a
number of operators:

� * is the multiplication operator,

� - is the subtraction operator,

� = is the assignment operator.

The Fortran 90 language also contains + and / operators for addition and division.

Division is much harder than any other operation for a CPU to perform - it takes longer so uses
more resources, for example, if there is a choice between dividing by 2.0 or multiplying by 0.5

the latter should be selected.

2 PRINT*, "This is equal to", Deg C, "C" | displays a string on the screen followed by
the value of a variable (Deg C) followed by a second string ("C").

By default, input is from the keyboard and output to the screen.

September 2, 1997 University of Liverpool

2.6. How to Write a Computer Program 9

2.6 How to Write a Computer Program

There are four general phases during the development of any computer program:

1. specify the problem,

2. analyse and break down into a series of steps towards solution, (i.e., design an algorithm),

3. write the Fortran 90 code,

4. compile and run (i.e., test the program).

When writing a computer program it is absolutely vital that the problem to be solved is fully understood.
A good percentage of large programming projects run into trouble owing to a misunderstanding of what
is actually required. The speci�cation of the problem is crucial. It is usual to write a detailed `spec'
of the problem using a `natural language' (e.g., English). Unfortunately, it is very easy to write an
ambiguous speci�cation which can be interpreted in a number of ways by di�erent people. In order to
combat this, a number of Formal Methods of speci�cation have been developed. These methods are
often high-level abstract mathematical languages which are relatively simple to convert to high-level
programs; in some cases this can be done automatically. Examples of such languages are Z and VDM.
We do not propose to cover such speci�cation languages here. For the purposes of learning Fortran 90,
a simple natural language speci�cation is adequate.

Once the problem has been speci�ed, it needs to be broken down into small steps towards the solution,
in other words an algorithm should be designed. It is perfectly reasonable to use English to specify
each step. This is known as pseudo-code.

The next two phases go hand-in-hand, they are often known as the code-test-debug cycle and it is
often necessary to perform the cycle a number of times. It is very rare that a program is written
correctly on the �rst attempt. It is common to make typographical errors which are usually unearthed
by the compiler. Once the typo's have been removed, the program will be able to be compiled and an
executable image generated. Again, it is not uncommon for execution to expose more errors or bugs.
Execution may either highlight run-time errors which occur when the program tries to perform illegal
operations (e.g., divide by zero) or may reveal that the program is generating the wrong answers. The
program must be thoroughly tested to demonstrate that it is indeed correct. The most basic goal
should be to supply test data that executes every line of code. There are many software tools that
generate statistical reports of code coverage, such as the Unix tcov utility or the more comprehensive
LDRA Testbed.

2.7 A Quadratic Equation Solver

This section shows the various steps that are needed when designing and writing a computer program
to generate the roots of a quadratic equation.

2.7.1 The Problem Speci�cation

Write a program to calculate the roots of a quadratic equation of the form:

ax2 + bx+ c = 0

Fortran 90 Course Notes File: CourseNotes.ps

10 2. What Are Computer Programs

The roots are given by the following formula

x =
�b�p

b2 � 4ac

2a

2.7.2 The Algorithm

1. READ the values of the coe�cients a, b and c from the keyboard.

2. if a is zero then stop as we do not have a quadratic equation,

3. calculate value of discriminant D = b2 � 4ac

4. if D is zero then there is one root: �b
2a
,

5. if D is > 0 then there are two real roots: �b+
p
D

2a
and �b�

p
D

2a
,

6. if D is < 0 there are two complex roots: �b+i
p
�D

2a
and �b�i

p
�D

2a
,

7. PRINT solution.

2.7.3 The Program

The following program is one solution to the problem:

PROGRAM QES

IMPLICIT NONE

INTEGER :: a, b, c, D

REAL :: Real_Part, Imag_Part

PRINT*, "Type in values for a, b and c"

READ*, a, b, c

IF (a /= 0) THEN

! Calculate discriminant

D = b*b - 4*a*c

IF (D == 0) THEN ! one root

PRINT*, "Root is ", -b/(2.0*a)

ELSE IF (D > 0) THEN ! real roots

PRINT*, "Roots are",(-b+SQRT(REAL(D)))/(2.0*a),&

"and", (-b-SQRT(REAL(D)))/(2.0*a)

ELSE ! complex roots

Real_Part = -b/(2.0*a)

! Since D < 0, calculate SRQT of -D which will be +ve

Imag_Part = (SQRT(REAL(-D))/(2.0*a))

PRINT*, "1st Root", Real_Part, "+", Imag_Part, "i"

PRINT*, "2nd Root", Real_Part, "-", Imag_Part, "i"

END IF

ELSE ! a == 0

! a is equal to 0 so ...

PRINT*, "Not a quadratic equation"

END IF

END PROGRAM QES

September 2, 1997 University of Liverpool

2.8. The Testing Phase 11

2.8 The Testing Phase

As the basic goal we want to ensure that each and every line of the program has been executed.
Looking at the code we need the following test cases:

1. discriminant greater than zero: real valued roots.

2. discriminant equals zero: single real valued root.

3. discriminant less than zero: complex valued roots.

4. coe�cient a is zero: not a quadratic equation.

These four situations can be seem to correspond to each of the four PRINT statements in the program.
The following values of coe�cients should exercise each of these lines:

1. a = 1, b = �3 and c = 2,

2. a = 1, b = �2 and c = 1,

3. a = 1, b = 1 and c = 1,

4. a = 0, b = 2 and c = 3.

Below is what happens when the above test data is supplied as input to our program.

uxa{adamm} 35> a.out

Type in values for a, b and c

1 -3 2

Roots are 2.0000000 and 1.0000000

uxa{adamm} 36> a.out

Type in values for a, b and c

1 -2 1

Root is 1.0000000

uxa{adamm} 37> a.out

Type in values for a, b and c

1 1 1

1st Root -0.5000000 + 0.8660254 i

2nd Root -0.5000000 - 0.8660254 i

uxa{adamm} 38> a.out

Type in values for a, b and c

0 2 3

Not a quadratic equation

It can be seen that every line has been executed and in each case the correct results have been produced.

2.8.1 Discussion

The previous program introduces some new ideas,

Fortran 90 Course Notes File: CourseNotes.ps

12 2. What Are Computer Programs

2 comments | anything on a line following a ! is ignored. Comments are added solely for the
bene�t of the programmer | often a program will be maintained by a number of di�erent people
during its lifetime. Adding useful and descriptive comments will be invaluable to anybody who
has to modify the code. There is nothing wrong with having more comments in a program than
there are executable lines of code!

2 IF construct | di�erent lines are executed depending on the value of the Boolean expression.
IF statements and constructs are explained more fully in Sections 11.1 and 11.2.

2 relational operators | == (`is equal to') or > (`is greater than'). Relational operators, (see
10.4,) allow comparisons to be made between variables. There are six such operators for use
between numeric variables, the remaining four are

� >= | `greater than or equal to'

� /= | `not equal to'

� < | `less than'

� <= | `less than or equal to'

These operators can also be written in non-symbolic form, these are .EQ., .GT., .GE., .NE.,
.LT. and .LE. respectively.

2 nested constructs | one control construct can be located inside another. This is explained
more fully in Section 11.3.

2 procedure call | SQRT(X) returns square root of X. A procedure is a section of code that
performs a speci�c and common task. Calculating the square root of a number is a relatively
common requirement so the code to do this has been written elsewhere and can be called at any
point in the program. This procedure requires an argument, X, to be supplied | this is the
number that is to be square rooted. In this case, the routine is an intrinsic procedure, this
means that it is part of the Fortran 90 language itself | every compiler is bound to include this
procedure. For more information see Section 17.2.

2 type conversion | in the above call, the argument X must be REAL (this is speci�ed in the
Fortran 90 standard language de�nition). In the program, D is INTEGER, REAL(D) converts D to
be real valued so that SQRT can be used correctly. For a more detailed explanation see Section
13.1.

Another useful technique demonstrated here is the pre-calculation of common sub-expressions, for
example, in order to save CPU time we only calculate the discriminant, D, once.

2.9 Software Errors

Errors are inescapable! There are two types of error: compile-time or syntax errors and run-time
errors. Errors are often known as `bugs' because one of the very earliest computers started producing
the wrong answers when a moth ew inside it and damaged some of its valves!

2.9.1 Compile-time Errors

In quadratic equation solver program, if we accidentally mistyped a variable name:

Rael_Part = -b/(2.0*a)

September 2, 1997 University of Liverpool

2.10. The Compilation Process 13

then the compiler would generate a syntax error:

uxa{adamm} 40> f90 Quad.f90

NAg Fortran 90 compiler v2.2.

Error: Quad.f90, line 16:

Implicit type for RAEL_PART

detected at RAEL_PART@=

Error: Quad.f90, line 24:

Symbol REAL_PART referenced but never set

detected at QES@<end-of-statement>

[f90 terminated - errors found by pass 1]

The compiler is telling us that RAEL PART has not been given an explicit type, in other words, it has
not been declared in the speci�cation area of the code. It is also telling us that we are trying to print
out the value of REAL PART but that we have not actually assigned anything to it. As you can see from
the above compiler output, error messages tend to be obtuse at times. A sign of a good compiler is
one that can give speci�c and useful error messages rather than simply telling you that your program
doesn't make sense!

2.9.2 Run-time Errors

If we had made the following typo in our quadratic equation solver,

Real_Part = -b/(.0*a)

then the program would compile but upon execution we would get a run-time error,

uxa{adamm} 43> a.out

Type in values for a, b and c

1 1 1

*** Arithmetic exception:

Floating divide by zero - aborting

Abort

the program is telling the CPU to divide b by zero (.0*a). As this is impossible, our program crashes
and an error message is sent to the screen. It is run-time errors like this that mean it is absolutely
essential to thoroughly test programs before committing them for serious use.

It is also possible to write a program that gives the wrong results | this is likely to be a bug in the
algorithm!

2.10 The Compilation Process

The NAg Fortran 90 compiler is invoked by f90 followed by the �lename of the program to be compiled:

f90 Quad.f90

This command:

Fortran 90 Course Notes File: CourseNotes.ps

14 2. What Are Computer Programs

1. checks the program syntax

2. generates object code

3. passes object code to linker which attached libraries (system, I/O, etc) and generates executable
code in a �le called a.out.

Step 3 attaches code which deals with, amongst other things, mathematical calculations and input from
the keyboard and output to the screen. This code, which is resident in a system library, is used with all
available compilers, in other words, the same I/O library will be used with C, ADA or C++ programs.
This alleviates the need for each compiler to include a separate instance of these I/O routines. It is
possible that this step may give a linker error if procedures used in the code cannot be found in a
library.

Executable code is processor speci�c. Code complied for an Intel Pentium will not run an a Sun SPARC
and vice-versa. If a program is moved to a di�erent platform then it will need to be recompiled. If
the program conforms to the Fortran 90 standard then the source code will not need editing at all.
Some compilers accept extensions to the Fortran 90 standard. If any of these extensions are used
the program will be non-standard conforming and may need signi�cant rewriting when compiled on a
di�erent platform or by a di�erent compiler.

2.11 Compiler Switches

All compilers can be invoked with a number of di�erent options. The e�ect of these options is explained
in the man pages or in the compiler manual. The NAg compiler has a number, for example,

2 -o < output-�lename>: gives executable a di�erent name, for example, Quad

f90 Quad.f90 -o Quad

2 -dryrun: show but do not execute commands constructed by the compiler.

2 -hpf: accept the extensions to Fortran 90 as speci�ed by the High Performance Fortran Forum.

2 -info < level>: set level of information messages generated by the compiler, from 0 to 9.

2 -time: report execution times

f90 Quad.f90 -o Quad -time

For more information about the compiler type:

man f90

Question 1: Compilation and Editing

The following program calculates the roots of a quadratic equation:

September 2, 1997 University of Liverpool

2.11. Compiler Switches 15

PROGRAM QES

IMPLICIT NONE

INTEGER :: a, b, c, D

REAL :: Real_Part, Imag_Part

PRINT*, "Type in values for a, b and c"

READ*, a, b, c

IF (a /= 0) THEN

! Calculate discriminant

D = b*b - 4*a*c

IF (D == 0) THEN ! one root

PRINT*, "Root is ", -b/(2.0*a)

ELSE IF (D > 0) THEN ! real roots

PRINT*, "Roots are",(-b+SQRT(REAL(D)))/(2.0*a),&

"and", (-b-SQRT(REAL(D)))/(2.0*a)

ELSE ! complex roots

Real_Part = -b/(2.0*a)

Imag_Part = (SQRT(REAL(-D))/(2.0*a))

PRINT*, "1st Root", Real_Part, "+", Imag_Part, "i"

PRINT*, "2nd Root", Real_Part, "-", Imag_Part, "i"

END IF

ELSE ! a == 0

PRINT*, "Not a quadratic equation"

END IF

END PROGRAM QES

1. Using an editor, type the above program into a �le called QuadSolver.f90

2. Compile and run the program. Verify the correctness of the code by supplying the following test
data:

(a) a = 1, b = �3 and c = 2,

(b) a = 1, b = �2 and c = 1,

(c) a = 1, b = 1 and c = 1,

(d) a = 0, b = 2 and c = 3.

3. Copy QuadSolver.f90 into a new �le called NewQuadSolver.f90.

4. Edit this �le and declare a new REAL variable called one over 2a.

5. In the executable part of the code, set one over 2a to be equal to the value of 1/(2.0*a).
Where ever this expression occurs replace it with one over a2. Why is this a good idea?

6. De�ne another new REAL variable called sqrt D and where appropriate pre-calculate SQRT(REAL(D))
and substitute this new variable in place of this expression.

7. Use a di�erent set of test data to that given above to convince yourself that NewQuadSolver.f90
is a correct program.

8. Change the name of the program to be FinalQuadSolver.f90 and compile the code to produce
an executable �le called FinalQuadSolver.

9. Delete the original program QuadSolver.f90 and the executable �le a.out.

Question 2: The Hello World Program

Write a Fortran 90 program to print out Hello World on the screen.

Fortran 90 Course Notes File: CourseNotes.ps

Module 2:
Introduction to Fortran 90

3 Introduction

Fortran 77 has been widely used by scientists and engineers for a number of years now. It has been a
very successful language but is now showing signs of age, in the last few years there has been a tendency
for people to drift away from Fortran 77 and begin to use C, Ada or C++. The Fortran standard has
now been revised to bring it up to date with a new improved language, known informally as Fortran 90,
being de�ned.. Comparisons have been (rightly) drawn between the new Fortran standard and APL,
ADA and C++. All three languages contain elements which make them the `avour of the month',
they are, to some degree, object oriented. The criteria for what makes a language actually object
oriented is debatable but the new operator overloading, user de�ned typing and MODULE packaging
features of Fortran 90 certainly help to forward its case. Along with ADA and APL it uses the concept
of array operations and reduction operators; Fortran 90 also supports user de�ned generic procedures
to enhance usability but these are implemented in a simpler and more e�cient way than in ADA.

Here we highlight the new Fortran 90 features which make language more robust and usable, for
example, of those mentioned above, many are object-based facilities which make it more di�cult to
make mistakes or do daft things. Fortran 90 is also comparable to ADA in the sense that it too has
many restrictions detailed in the standard document meaning that mistakes, which in other languages
(such as C, C++ and Fortran 77) would be syntactically correct but cause an odd action to be
taken, are ruled out at compile time. As an example of this, if explicit interfaces are used then it
is not possible to associate dummy and actual arguments of di�erent types | this was possible in
Fortran 77 and was sometimes used in anger but generally indicated an error.

3.1 The Course

Throughout the course it is assumed that the user has experience of Fortran 77 or least one other
high level programming language such as Modula, Pascal, APL, Ada, C,or Algol and understands terms
like bits, real numbers, precision and data structures.

4 Fortran Evolution

4.1 A Brief History of Fortran 77

Fortran, which originally stood for IBM Mathematical FORmula TRANslation System but has been
abbreviated to FORmula TRANslation, is the oldest of the established \high-level" languages, having
been designed by a group in IBM during the late 1950s. The language became so popular in the early
1960s that other vendors started to produce their own versions and this led to a growing divergence of
dialects (by 1963 there were 40 di�erent compilers). It was recognised that such divergence was not in
the interests of either the computer users or the computer vendors and so Fortran 66 became the
�rst language to be o�cially standardised in 1972 (it is quite common for the Fortran version number
to be out of step with the standardisation year). The publication of the standard meant that Fortran

16

4.1. A Brief History of Fortran 77 17

became more widely implemented than any other language. By the mid 1970s virtually every computer,
mini or mainframe, was supplied with a standard-conforming Fortran 66 language processing system.
It was therefore possible to write programs in Fortran on any one system and be reasonably con�dent
that these could be moved fairly easily to work on any other system. This, and the fact that Fortran
programs could be processed very e�ciently, led to Fortran being the most heavily-used programming
language for non-commercial applications.

The standard de�nition of Fortran was updated in the late 1970's and a new standard, ANSI X3.9-
1978, was published by the American National Standards Institute. This standard was subsequently
(in 1980) adopted by the International Standards Organisation (ISO) as an International Standard (IS
1539 : 1980). The language is commonly known as Fortran 77 (since the �nal draft was actually
completed in 1977) and is the version of the language now in widespread use. Compilers, which usually
support a small number of extensions have, over the years, become very e�cient. The technology
which has been developed during the implementation of these compilers will not be wasted as it can
still be applied to Fortran 90 programs.

The venerable nature of Fortran and the rather conservative character of the 1977 standard revision
left Fortran 77 with a number of old-fashioned facilities that might be termed de�ciencies, or at
least infelicities. Many desirable features were not available, for example, in Fortran 77 it is very
di�cult to represent data structures succinctly and the lack of any dynamic storage means that all
arrays must have a �xed size which can not be exceeded; it was clear from a very early stage that a
new, more modern, language needed to be developed. Work began in early 80's on a language known
as `Fortran 8x'. (`x' was expected to be 8 in keeping with the previous names for Fortran.) The work
took 12 years partly because of the desire to keep Fortran 77 a strict subset and also to ensure that
e�ciency (one of the bonus's of a simple language) was not compromised. Languages such as Pascal,
ADA and Algol are a treat to use but cannot match Fortran for e�ciency.

Fortran 90 is a major development of the language but nevertheless it includes all of Fortran 77

as a strict subset and so any standard conforming Fortran 77 program will continue to be a valid
Fortran 90 program. The main reason for this is due to the vast amount of so-called `dusty deck'
programs that populate Scienti�c installations all over the world. Many man-years have been put into
writing these programs which, after so many years of use (i.e., in-the-�eld testing,) are very reliable.
Most of the dusty deck codes will be Fortran 77 but there are doubtless many lines of Fortran 66

too.

In addition to the old Fortran 77 constructs, Fortran 90 allows programs to be expressed in ways
that are more suited to a modern computing environment and has rendered obsolete many of the
mechanisms that were appropriate in Fortran 77. Here, we have tried to present an approach to
programming which uses the new features of Fortran 90 to good e�ect and which will result in portable,
e�cient, safe and maintainable code. We do not intended to present a complete description of every
possible feature of the language.

In Fortran 90 some features of Fortran 77 have been replaced by better, safer and more e�cient
features. Many of these features are to be labelled as depracated and should not be used in new
programs. Tools exist to e�ect automatic removal of such obsolescent features, examples of these
are (Paci�c Sierra Research's) VAST90 and (NA Software's) LOFT90 In addition, these tools perform
di�ering amounts of vectorisation (transliteration of serial structures to equivalent parallel structures).

As the Fortran 90 standard is very large and complex there are (inevitably) a small number of ambiguities
/ conicts / grey areas. Such anomalies often only come to light when compliers are developed. Since
standardisation many compilers have been under development and a number of these anomalies have
been identi�ed. A new standard, Fortran 95, will recitify these faults and extend the language in the
appropriate areas. In the last couple of years the Fortran 90 based language known as High Performance
Fortran (HPF) has been developed. This language contains the whole of Fortran 90 and also includes
other desirable extensions. Fortran 95 will include many of the new features from HPF [4].

Fortran 90 Course Notes File: CourseNotes.ps

18 4. Fortran Evolution

(HPF is intended for programming distributed memory machines and introduced \directives" (For-
tran 90 structured comments) to give hints on how to distribute data (arrays) amongst grids of (non-
homogeneous) processors. The idea is to relieve the programmer of the burden of writing explicit
message-passing code; the compilation system does this instead. HPF also introduced a small number
of executable statements (parallel assignments, side e�ect free (PURE) procedures) which have been
adopted by Fortran 95.)

4.2 Drawbacks of Fortran 77

By todays standards Fortran 77 is outmoded | many other languages have been developed which
allow greater expressiveness and ease of programming. The main drawbacks have been identi�ed as:

1. Fortran 77 awkward `punched card' or `�xed form' source format.

Each line in a Fortran 77 program corresponds to a single punched card with 72 columns
meaning that each line can only be 72 characters long. This causes problems because any text
in columns 73 onwards is simply ignored (line numbers used to be placed in these columns). In
this day and age, this restriction is totally unnecessary.

Other restrictions of Fortran 77:

2 the �rst 5 columns are reserved for line numbers;

2 the 6th column can only be used to indicate a continuation line;

2 comments can only be initiated by marking the �rst column with a special character;

2 only upper case letters are allowed anywhere in the program;

2 variable names can only be 6 characters long meaning that mnemonic and cryptic names
must be used all the time | maintenance unfriendly!

2 no in-line comments are allowed, comments must be on a line of their own;

2. Lack of inherent parallelism.

Fortran is supposed to be a performance language | today High Performance Computing is
implemented on Parallel machines | Fortran 77 has no in-built way of expressing parallelism.
In the past calls to specially written vector subroutines have been used or reliance has been made
on the compiler to vectorise (parallelise) the sequential (serial) code. It is much more e�cient to
give the user control of parallelism. This has been done, to a certain extent, by the introduction
of parallel `array syntax'.

3. Lack of dynamic storage.

Fortran 77 only allows static storage for example, this means temporary short-lived arrays
cannot be created on-the-y nor can pointers, which are useful for implementing intuitive data
structures, be used. All Fortran 77 programs must declare arrays `big enough' for any future
problem size which is an awkward and very unattractive restriction absent in virtually all of the
current popular high-level languages.

4. Lack of numeric portability.

Problems arise with precision when porting Fortran 77 code from one machine to another.
Many Fortran 77 systems implement their own extensions to give greater precision, this means
that the code becomes non-portable. Fortran 90 has taken ideas for the various Fortran 77

extensions and improved them so that the new language is much more portable that before.

September 2, 1997 University of Liverpool

4.3. New Fortran 90 Features 19

5. Lack of user-de�ned data structures.

In Fortran 77 intuitive (user-de�ned) data types were not available as they are in ADA,
Algol, C, Pascal etc.. Their presence would make programming more robust and simpler. In
Fortran 77 there is no way of de�ning compound objects.

6. Lack of explicit recursion.

Fortran 77 does not support recursion which is a very useful and succinct mathematical
technique. In the past this had to be simulated using a user de�ned stack and access routines
to manipulate stack entries. Recursion is a fairly simple and a code e�cient concept and was,
to all intents and purposes, unavailable.

7. Reliance on unsafe storage and sequence association features.

In Fortran 77, global data is only accessible via the notoriously open-to-abuse COMMON block.
The rules which applied to COMMON blocks are very lax and the user could inadvertently do
quite horrendous things! Fortran 90 presents a new method of obtaining global data. Another
technique which is equally as open to abuse as COMMON blocks is that a user is allowed to alias
an array using an EQUIVALENCE statement. A great deal of errors stem for mistakes in these two
areas which are generally regarded as unsafe, however, there is no real alternative in Fortran 77.

4.3 New Fortran 90 Features

Fortran 90 is a major revision of its predecessor many of the inadequacies of Fortran 77 have been
addressed:

1. Fortran 90 de�nes a new code format which is much more like every other language;

2 free format | no reliance on speci�c positioning of special characters;

2 upto 132 columns per line;

2 more than one statement per line;

2 in-line comments allowed (this makes it easier to annotate code);

2 upper and lower case letters allowed (makes code more readable);

2 it is virtually impossible to misplace a character now;

2 longer and more descriptive object names (upto 31 characters);

2 names can be punctuated by underscores making then more readable.

2. Parallelism can now be expressed using whole array operations which include extensive slicing
and sectioning facilities. Arithmetic may now be performed on whole arrays and array sections.
Operations in an array valued expression are conceptually performed in parallel.

To support this feature, many parallel intrinsic functions have been introduced including reduction
operations such as SUM (add all elements in an array and return one value | the sum) and MAX-

VAL (scan all elements in an array and return one value | the biggest). This concept comes
from APL.

The masked (parallel) assignment (WHERE) statement is also a new feature.

3. The introduction of dynamic (heap) storage means that pointers and allocatable arrays can be
implemented. Temporary arrays can now be created on-the-y, pointers can be used for aliasing
arrays or sections of arrays and implementing dynamic data structures such as linked lists and
trees.

Fortran 90 Course Notes File: CourseNotes.ps

20 4. Fortran Evolution

4. To combat non-portability, the KIND facility has been introduced. This mechanism allows the
user to specify the desired precision of an object in a portable way. Type speci�cations can be
parameterised meaning that the precision of a particular type can be changed by altering the
value of one constant. Appropriate intrinsic inquiry functions are de�ned to query the precision
of given objects.

5. User-de�ned types, which are constructed from existing types, can now be constructed. For
example, a type can be de�ned to represent a 3D coordinate which has three components (x; y; z)
or a di�erent type can be used to represent personal details: name, age, sex address, phone
number etc. De�ning objects in this way is more intuitive and makes programming easier and
less error prone.

6. Explicit recursion is now available. For reasons of e�ciency the user must declare a procedure
to be recursive but it can then be used to call itself.

7. Facility packaging has been introduced | MODULEs replace many features of Fortran 77. They
can be used for global de�nitions (of types, objects, operators and procedures), and can be used
to provide functionality whose internal details are hidden from the user (data hiding).

Reshaping and retyping functions have been added to the language which means that features
that relied on storage association (such a EQUIVALENCE) do not have to be used.

2 procedure interfaces which declare procedure and argument names and types can now be speci�ed,
this means that:

� programs and procedures can be separately compiled | more e�cient development;

� array bounds do not have to be passed as arguments;

� array shape can be inherited from the actual argument;

� better type checking exists across procedure boundaries;

� more e�cient code can be generated.

2 new control constructs have been introduced, for example,

� DO ... ENDDO (not part of Fortran 77) this will reduce use of numeric labels in the
program;

� DO ... WHILE loop;

� the EXIT command for gracefully exiting a loop;

� the CYCLE command for abandoning the current iteration of a loop and commencing the
next one;

� named control constructs which are useful for code readability;

� SELECT CASE control block. which is more succinct, elegant and e�cient than an IF
ELSEIF ... ELSEIF block.

2 Internal procedures are now allowed. A procedure is allowed to contain a further procedure with
local scope | it cannot be accessed from outside of the procedure within which it is de�ned.

2 It is now possible to de�ne and overload operators for derived and intrinsic data types which
mean that so-called `semantic extension' can be performed, For example, an arbitrary length
integer can be implemented using a linked list structure (one digit per cell) and then all the
intrinsic operators de�ned (overloaded) so that this type can be treated in the same way as all
other types. The language thus appears to have been extended. All intrinsic operators +, -,

*, / and ** and assignment, =, can be overloaded (de�ned for new types).

September 2, 1997 University of Liverpool

4.4. Advantages of Additions 21

2 MODULEs also provide object based facilities for Fortran 90, for example, it is possible to use a
module to implement the abovementioned long integer data type | all required facilities (for
example, de�nitions, objects, operators, overloaded intrinsics and manipulation procedures) may
be packaged together in a MODULE, the user simple has to USE this module to have all the features
instantly available. The module can now be used like a library unit.

2 An ancillary standard, `The varying strings module', has been de�ned and is implemented in
a module. When using this module, the user can simply declare an object of the appropriate
type (VARYING STRING) which can be manipulated in exactly the same fashion as the intrinsic
character type. All intrinsic operations and procedures are included in the module and are
therefore available for all objects of this type. All the implementation details are hidden from the
user.

2 useful libraries can be written and placed in a module.

2 BLOCK DATA subprograms are now redundant since a MODULE can be used for the same purpose.

4.4 Advantages of Additions

The introduction of the previously mentioned new features have had an impact on the general standing
of the language. Fortran 90 can be thought of as being: more natural, more exible, more expressive,
more usable, more portable and, above all, safer.

Even though Fortran 77 is a subset of Fortran 90 the user should steer away from `unsafe' features
of the new language. Many `dangerous' features have been superseeded by new features of Fortran 90,
for example,

2 COMMON blocks | use a module;

2 EQUIVALENCE | use TRANSFER; (using EQUIVALENCE also reduces portability);

2 reshaping of arrays across procedure boundaries (this used to be possible when using assumed
sized arrays) | use the RESHAPE function at the call site;

2 retyping of arrays across procedure boundaries | use TRANSFER;

2 reliance on labels has been decreased;

2 �xed form source | use free form;

2 IMPLICIT NONE statement introduced which, if preset, disallows implicit typing of variables. (In
Fortran 77 undeclared variables were implicitly declared with the type being derived from the
�rst letter of the variable name | this meant that wrongly spelled variable names could pass
through a compiler with no warning messages issued at all. If the variable was referenced then
a totally random value (the incumbent value of the memory location where the variable resides)
would be used with potentially disastrous consequences.

2 internal procedures (procedures within procedures with local scope) alleviate the need for the
awkward ENTRY statements ans statement functions.

5 Language Obsolescence

Fortran 90 has carried forward the whole of Fortran 77 and also a number of features from existing
Fortran compilers. This has been done to protect the investment in the millions of lines of code that

Fortran 90 Course Notes File: CourseNotes.ps

22 5. Language Obsolescence

have been written in Fortran since it was �rst developed. Inevitably, as modern features have been
added, many of the older features have become redundant and programmers, especially those using
Fortran 90 for the �rst time, need to be aware of the possible pit-falls in using them.

Fortran 90 has a number of features marked as obsolescent, this means,

2 they are already redundant in Fortran 77;

2 better methods of programming already existed in the Fortran 77 standard;

2 programmers should stop using them;

2 the standards committee's intention is that many of these features will be removed from the next
revision of the language, Fortran 95;

5.1 Obsolescent Features

Fortran 90 includes the whole of Fortran 77 as a subset, warts and all, but the speci�cation also
agged some facilities as obsolescent. The following features may well be removed from the next revision
of Fortran and should not be used when writing new programs. Fortran 90 retains the functionality of
these features which can all be better expressed using new syntax:

5.1.1 Arithmetic IF Statement

It is a three way branch statement of the form,

IF(< expression>) < label1>,< label2>,< label3>

Here <expression> is any expression producing a result of type INTEGER, REAL or DOUBLE PRECISION,
and the three labels are statement labels of executable statements. If the value of the expression is
negative, execution transfers to the statement labelled < label1>. If the expression is zero, transfer
is to the statement labelled < label2>, and a positive result causes transfer to < label3>. The same
label can be repeated.

This relic of the original Fortran has been redundant since the early 1960s when the logical IF and
computed GOTO were introduced and it should be replaced by an equivalent CASE or IF construct.

5.1.2 ASSIGN Statement

Used to assign a statement label to an INTEGER variable (the label cannot be used as an integer though
it is generally used in a GOTO or FORMAT statement.

ASSIGN < label> TO < integer-variable>

5.1.3 ASSIGNed GOTO Statement

Historically this was used to simulate a procedure call before Fortran had procedures | its use should
be replaced by either an IF statement or by a procedure call.

September 2, 1997 University of Liverpool

5.1. Obsolescent Features 23

5.1.4 ASSIGNed FORMAT Statement

The ASSIGN statement can be used to assign a label to an integer which is subsequently referred to in
an input/output statement.

The same functionality can be obtained by using CHARACTER strings to hold FORMAT speci�cations.
The FORMAT speci�cation can either be this string or a pointer to this string.

5.1.5 Hollerith Format Strings

Used to represent strings in a format statement like this:

WRITE(*,100)

100 FORMAT(17H TITLE OF PROGRAM)

The use of Hollerith strings is out-of-date as strings can now be delimited by single or double quotes:

WRITE(*,100)

100 FORMAT('TITLE OF PROGRAM')

5.1.6 PAUSE Statement

PAUSE was used to suspend execution until a key was pressed on the keyboard.

PAUSE < stop code>

The < stop code> is written out at the PAUSE new code should use a PRINT statement for the < stop

code> and a READ statement which waits for input to signify that execution should recommence.

5.1.7 REAL and DOUBLE PRECISION DO-loop Variables

In Fortran 77 REAL and DOUBLE PRECISION variables can be used in DO-loop control expressions
and index variables. This is unsafe because a loop with real valued DO-loop control expressions could
easily iterate a di�erent number of times on di�erent machines | a loop with control expression
1.0,2.0,1.0 may loop once or twice because real valued numbers are only stored approximately, 1.0
+ 1.0 could equal, say, 1.99, or 2.01. The �rst evaluation would execute 2 times whereas the second
would only give 1 execution. The solution to this problem is to use INTEGER variables and construct
REAL or DOUBLE PRECISION variables within the loop.

The following loop is obsolescent:

DO x = 1.0,2.0,1.0

PRINT*, INT(x)

END DO

PRINT*, x

Fortran 90 Course Notes File: CourseNotes.ps

24 5. Language Obsolescence

5.1.8 Shared DO-loop Termination

A number of DO loops can currently be terminated on the same (possibly executable) statement |
this causes all sorts of confusion, when programs are changed so that the loops do not logically end on
a single statement any more.

IF (N < 1) GOTO 100

DO 100 K=1,N

DO 100 J=1,N

DO 100 I=1,N

...

100 A(I,J,K)=A(I,J,K)/2.0

The simple solution is to use END DO instead.

5.1.9 Alternate RETURN

This allows a calling program unit to specify labels as arguments to a called procedure as shown. The
called procedure can then return control to di�erent points in the calling program unit by specifying
an integer parameter to the RETURN statement which corresponds to a set of labels speci�ed in the
argument list.

...

CALL SUB1(x,y,*98,*99)

...

98 CONTINUE

...

99 CONTINUE

...

SUBROUTINE SUB1(X,Y,*,*)

...

RETURN 1

...

RETURN 2

END

Use an INTEGER return code and a GOTO statement or some equivalent control structure.

5.1.10 Branching to an END IF

Fortran 77 allowed branching to an END IF from outside its block, this feature is deemed obsolete
so, instead, control should be transferred to the next statement instead or, alternatively, a CONTINUE

statement could be inserted.

5.2 Undesirable Features

The following features are not marked as obsolescent yet can, and indeed should be, expressed using
new syntax:

September 2, 1997 University of Liverpool

25

5.2.1 Fixed Source Form

Use free form source form as this is less error prone and more intuitive.

5.2.2 Implicit Declaration of Variables

Always use the IMPLICIT NONE statement in each program unit, any undeclared variables will be
reported at compile time.

5.2.3 COMMON Blocks

One of the functions of modules is to provide global data, this will be expanded upon later.

5.2.4 Assumed Size Arrays

It is recommended that instead of assumed-size arrays, assumed-shape arrays be used in new programs
instead. With this class of array it is not necessary to explicitly communicate any information regarding
bounds to a procedure, however, in this case an explicit interface must be provided. If an array is to be
reshaped or retyped across a procedure boundary then the new intrinsics RESHAPE, TRANSFER, PACK
and UNPACK should be used to achieve the desired e�ect.

5.2.5 EQUIVALENCE Statement

EQUIVALENCE is often used for retyping or aliasing and sometimes for simulating dynamic workspace.
This feature is considered to be unsafe (and non-portable) and should not be used. Fortran 90 o�ers:

2 the TRANSFER intrinsic for retyping,

2 a POINTER variable for aliasing,

2 the ALLOCATABLE attribute for temporary workspace arrays.

5.2.6 ENTRY Statement

ENTRY statements allow procedures to be entered at points other than the �rst line. This facility can
be very confusing; if this e�ect is desired then the code should be reorganised to take advantage of
internal procedures.

6 Object Oriented Programming

In the last ten years Object Oriented Design and Object Oriented Programming has become increasingly
popular; languages such as C++ and Ei�el have been hailed as the programming languages of the
future, but how does Fortran 90 compare?

Programming paradigms have evolved over the years. With each successive re�nement of program-
ming style have come improvements in readability, maintainability, reliability, testability, complexity,

Fortran 90 Course Notes File: CourseNotes.ps

26 6. Object Oriented Programming

power, structure and reusability. The �rst computer programs were written in assembler languages and
primitive languages such as (the original) Fortran which possessed only the single statement IF and
GOTO statement to control the ow of execution; even procedures had to be simulated using a cunning
combination of ASSIGN and GOTO. Clearly the directed graphs of these early programs resembled a bowl
of spaghetti with a vast number of logical paths passing through the code in an unstructured fashion.
Each path of a program represents a unique combination of predicates which (some argue) must all
be tested in order to gain con�dence that the program will function correctly. In [3] Davis presents
some estimations of the possible number of paths through such an unstructured program: a 100 line
program can have up to 10158 possible paths.

The next phase of programming style introduced the concept of a function; code modules could
be written and the program partitioned into logical (and to some extent) reusable blocks. This had
the e�ect of reducing the complexity of the program (less paths) and improving the maintainability,
readability and overall structure. A good example of an advanced functional language is Fortran 77.
If the 100 line program of above could be split into four separate functions then the number of paths
would be reduced to 1033.

Functional programming forced the user to adopt better programming practises, however, there still
existed many dimly lit back alleys where programmers can perform dirty tricks. In Fortran 77 use
of the COMMON block is one classic example. Due to the absence of high level data structures (see next
paragraph) users were often reluctant to supply seemingly endless lists of objects as arguments to func-
tions; it was much easier to hide things `behind-the-scenes' in a COMMON block which allows contiguous
areas of memory to be available to procedures. In Fortran 77 it is also easy to inadvertently retype
parts of the memory leading to all sort of problems. For example, the following program was supplied
to the Sun f77 compiler which generated one warning:

PROGRAM Duffer

DOUBLE PRECISION :: INIT

COMMON /GOOF/ INIT, A, B

CALL WHOOPS()

PRINT*, "INIT=", INIT, "A=", A, "B=", B

END

SUBROUTINE WHOOPS()

COMMON /GOOF/ INIT, A, B

INIT = 3

A = 4

B = 5

END

the following output was generated:

INIT= 6.9006308436664-314A= 5.00000B= 0.

With the introduction of Algol the concept of structured programming was born; chaotic jumps
around the code were replaced by compact and succinct blocks with a rigidly de�ned structure. Ex-
amples of such structures are loops and if blocks. Data was also allowed to be structured through the
use of pointers and structures. Both these features allowed for greater modularity, clarity and more
compact code. Fortran 77 missed the boat with regards to structured data, however, Fortran 90
has corrected this oversight. With this new structure applied, our 100 line program will now have a
maximum of 104 paths.

The latest and most fashionable programming paradigm is object-oriented programming. This
style of programming promotes software reusability, modularity and precludes certain error conditions

September 2, 1997 University of Liverpool

6.1. Fortran 90's Object Oriented Facilities 27

by packaging together type de�nitions and procedures for the manipulation of objects of that type.
Fortran 90 does not have such an extensive range of object-oriented capabilities as, say, C++ but is
comparable to (original) ADA and provides enough to be of great use to the programmer.

6.1 Fortran 90's Object Oriented Facilities

Fortran 90 has some degree of object oriented facilities such as:

2 data abstraction | user-de�ned types;

2 data hiding | PRIVATE and PUBLIC attributes;

2 encapsulation | Modules and data hiding facilities;

2 inheritance and extensibility | super-types, operator overloading and generic procedures;

2 polymorphism | users can program their own polymorphism by generic overloading;

2 reusability | Modules;

Fortran 77 had virtually no object oriented features at all, Fortran 90 adds much but by no means
all the required functionality. As usual there is a trade o� with e�ciency. One of the ultimate goals of
Fortran 90 is that the code must be e�cient.

6.1.1 Data Abstraction

It is convenient to use objects which mirror the structure of the entities which they model. In Fortran 90
user derived types provide a certain degree of abstraction and the availability of pointers allows fairly
complex data structures to be de�ned. Pointers are implemented in a di�erent way from many languages
and are considerably less exible (but more e�cient) than, say, pointers in C. As Fortran 90 pointers are
strongly typed, their targets are limited but this leads to more secure and faster code. Fortran 90 does
not support enumerated types but these can be simulated in a (semantic extension) module without
too much trouble.

Two main problems are the lack of parameterised derived types and the lack of subtypes.

Parameterised derived types are user-de�ned types where the individual type components have selectable
kinds. The idea would be to de�ne a `skeleton' type which could be supplied with KIND values in such
a way that the individual components are declared with these KINDs. As currently de�ned, derived
types can have kind values for the components but they are �xed, for example the following two types
are totally separate:

TYPE T1

INTEGER(KIND=1) :: sun_zoom

REAL(KIND=1) :: spock

END TYPE T1

TYPE T2

INTEGER(KIND=2) :: sun_zoom

REAL(KIND=2) :: spock

END TYPE T2

Fortran 90 Course Notes File: CourseNotes.ps

28 6. Object Oriented Programming

If the kind selection could be deferred until object declaration then they could be considered to be
parameterised.

Subtypes are, as their name suggests, a subclass of a parent type. A common example may be a
positive integer type which has exactly the same properties as an intrinsic INTEGER type but with a
restricted range. Subtypes are expensive to implement but provide range checking security.

6.1.2 Data Hiding

Fortran 90 supports fairly advanced data hiding. Any object or procedure can have its accessibility
de�ned in a MODULE by being given a PRIVATE or PUBLIC attribute. There is, however, a drawback in
that MODULEs may inherit functionality from previously written MODULEs by using them but objects and
functionality that are PRIVATE in the use-associated module cannot be seen in the new module. There
really needs to be a third type of accessibility which allows PRIVATE objects to be accessible outside
their module under certain circumstances. This would allow for much greater extensibility.

6.1.3 Encapsulation

Encapsulation refers to bundling related functionality into a library or other such self contained package
whilst shielding the user from any worries about the internal structure.

Encapsulation very closely aligned with data hiding and is available through MODULEs / MODULE PROC-

EDUREs and USE statements and backed up by the ability to rename module entities or to selectively
import only speci�ed objects.

6.1.4 Inheritance and Extensibility

Fortran 90 supports supertypes meaning that user-de�ned types can include other de�ned types and
a hierarchy can be built up, however, this does not apply in the other direction; Fortran 90 does not
have subtypes. Due to the lack of subtyping functional and object inheritance cannot be transmitted in
this fashion, however, ADA has subtypes but is still not considered to be an object oriented language.
Being able to de�ne subtypes which inherit access functions from the parent type is a very important
aspect of object oriented programming and Fortran 90 does not support this.

6.1.5 Polymorphism

The generic capabilities of Fortran 90 are very advanced, however, polymorphism is not inherent in the
language and must be programmed by the user. Speci�c procedures must always be user-written and
added to the generic interface. In addition Fortran 90 does not support dynamic binding, an example
of this is the inability to resolve generic procedure calls at run-time. (The standard forbids generic
procedure names to be used as actual procedure arguments, the speci�c name must be used instead.)
Dynamic binding is generally thought to be an expensive feature to have in the language and is not
included owing to e�ciency concerns.

Many instances of polymorphism are ruled out because of the lack of subtypes.

September 2, 1997 University of Liverpool

6.2. Comparisons with C++ 29

6.1.6 Reusability

MODULEs provide an easy method to access reusable code. Modules can contain libraries of types,
object declarations and functions which can be used by other modules. Use of the module facility must
be encouraged and traditional Fortran 77 programmers must try hard to program in this new way.

6.2 Comparisons with C++

In a paper, Fortran 90 and Computational Science, [2] available on the World Wide Web,

http://csep1.phy.ornl.gov/csep.html

C++ and Fortran 90 are compared and contrasted in their suitability for computational scienti�c work.

Fortran 90 Course Notes File: CourseNotes.ps

Module 3:
Elements of Fortran 90

7 Fortran 90 Programming

7.1 Example of a Fortran 90 Program

Consider the following example Fortran 90 program:

MODULE Triangle_Operations

IMPLICIT NONE

CONTAINS

FUNCTION Area(x,y,z)

REAL :: Area ! function type

REAL, INTENT(IN) :: x, y, z

REAL :: theta, height

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))

height = x*SIN(theta); Area = 0.5*y*height

END FUNCTION Area

END MODULE Triangle_Operations

PROGRAM Triangle

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c, Area

PRINT *, 'Welcome, please enter the&

&lengths of the 3 sides.'

READ *, a, b, c

PRINT *, 'Triangle''s area: ', Area(a,b,c)

END PROGRAM Triangle

The program highlights the following:

2 free format source code

Executable statements do not have to start in or after column 7 as they do in Fortran 77.

2 MODULE Triangle_Operations

A program unit used to house procedures. (Similar to a C++ `class'.)

2 IMPLICIT NONE

Makes declaration of variables compulsory throughout the module. It applies globally within the
MODULE.

2 CONTAINS

Speci�es that the rest of the MODULE consists of procedure de�nitions.

30

7.1. Example of a Fortran 90 Program 31

2 FUNCTION Area(x,y,z)

This declares the function name and the number and name of its dummy arguments.

2 REAL :: Area ! function type

FUNCTIONs return a result in a variable which has the same name as the function (in this case
Area). The type of the function result must be declared in either the header or in the declarations.

The ! initiates a comment, everything after this character on the same line is ignored by the
compiler.

2 REAL, INTENT(IN) :: x, y, z

The type of the dummy arguments must always be declared, they must be of the same type as
the actual arguments.

The INTENT attribute says how the arguments are to be used:

� IN means the arguments are used but not (re)de�ned;

� OUT says they are de�ned and not used;

� INOUT says that they are used and then rede�ned.

Specifying the INTENT of an argument is not compulsory but is good practise as it allows the
compiler to detect argument usage errors.

2 REAL :: theta, height

The �nal REAL declaration statement declares local variables for use in the FUNCTION. Such
variables cannot be accessed in the calling program, as they are out of scope, (not visible to the
calling program).

2 theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))

This statement assigns a value to theta and uses some mathematical operators:

� * - multiplication,

� ** - exponentiation;

� / - division

� + - addition,

� - - subtraction

The brackets (parenthesis) are used to group calculations (as on a calculator) and also to specify
the argument to the intrinsic function reference ACOS.

Intrinsic functions are part of the Fortran 90 language and cover many areas, the simplest and
most common are mathematical functions such as SIN and COS or MIN and MAX. Many are
designed to act elementally on an array argument, in other words they will perform the same
function to every element of an array at the same time.

2 height = x*SIN(theta); Area = 0.5*y*height

This highlights two statements on one line. The ; indicates that a new statement follows on the
same line. Normally only one statement per line is allowed.

The function variable Area must be assigned a value or else the function will be in error.

2 END MODULE | this signi�es the end of the module.

2 PROGRAM Triangle

The PROGRAM statement is not strictly necessary but its inclusion is good practice. There may
only be one per program.

Fortran 90 Course Notes File: CourseNotes.ps

32 7. Fortran 90 Programming

2 USE Triangle Operations| tells the program to attach the speci�ed module. This will allow
the Area function to be called from within the Triangle program.

2 IMPLICIT NONE

An IMPLICIT NONE statement turns o� implicit typing making the declaration of variables com-
pulsory.

2 REAL :: a, b, c, Area

Declaration of real valued objects. a, b and c are variables and Area is a function name. This
function must be declared because its name contains a value.

2 PRINT *, 'Welcome, please enter the& ...

This PRINT statement writes the string in quotes to the standard output channel (the screen).
The & at the end of the line tells compiler that the line continues and the & at the start of the text
tells the compiler to insert one space and continue the previous line at the character following
the &. If the & were at the start of the line, or if there were no & on the second line, then the
string would have a large gap in it as the indentation would be considered as part of the string.

2 READ *, a, b, c

This READ statement waits for three things to be input from the standard input (keyboard). The
entities should be separated by a space. Digits will be accepted and interpreted as real numbers;
things other than valid numbers will cause the program to crash.

2 PRINT *, 'Triangle''s area: ', Area(a,b,c)

This PRINT statement contains a function reference, Area, and the output of a string.

The '' is an escaped character, and is transformed, on output, to a single '. Typing just a single
quote here would generate an error because the compiler would think it had encountered the end
of the string and would ag the character s as an error. The whole string could be enclosed
by double quotes (") which would allow a single quote (') to be used within the string without
confusion. The same delimiter must be used at each end of the string.

The function call invokes the FUNCTION with the values of a, b and c being substituted for x,
y and z.

� a, b and c are known as actual-arguments,

� x, y and z are known as dummy-arguments.

� a, b and c and x, y and z are said to be argument associated

� cannot refer to a, b and c in the function they are not in scope.

2 END PROGRAM Triangle

An END PROGRAM statement terminates the main program.

7.2 Coding Style

It is recommended that the following coding convention is adopted:

2 Fortran 90 keywords, intrinsic functions and user de�ned type names and operators should be in
upper case and user entities should be in lower case but may start with a capital letter.

2 indentation should be 1 or 2 spaces and should be applied to the bodies of program units, control
blocks, INTERFACE blocks, etc.

September 2, 1997 University of Liverpool

33

2 the names of program units are always included in their END statements,

2 argument keywords are always used for optional arguments,

2 always use IMPLICIT NONE.

Please note: In order that a program �ts onto a page these rules are sometimes relaxed here.

Adopting a speci�c and documented coding style will make the code easier to read, and will allow
other people to be instantly familiar with the style of code.

8 Language Elements

8.1 Source Form

The most basic rules in any programming language are those which govern the source form. These
rules determine exactly how statements in a program are entered into the computer and how they
are displayed. The source form rules are analogous to those fundamentals of natural language which
de�ne the alphabet used to express the words in the language, the punctuation symbols to be used,
how sentences are to be written (left to right, up and down, right to left, etc.). These are the rules we
are going to describe here.

8.2 Free Format Code

Fortran 90 supports the new free format source form:

2 132 characters per line;

2 extended character set;

2 `&' line continuation character;

2 `!' comment initiator;

2 `;' statement separator;

2 signi�cant blanks.

Fortran 90 has two basically incompatible source forms, an old form compatible with that used in
Fortran 77, �xed format, and a new form more suited to the modern computing environment,
free format. The old form used a very strictly de�ned layout of program statements on lines. This
was well suited to the expression of programs when the main method of entering programs into a
computer was by the use of stacks of cards with holes punched in them to represent the characters
of the program statements. Such punched card systems also worked with a very restricted set of
characters; only upper-case letters, for example, were allowed. The new form is designed to be easier
to prepare and to read using the sort of keyboard / display that is now ubiquitous. This new form uses
a much wider character set and it allows much greater freedom in laying out statements on a line. It
is this new form that we are going to describe here since this is the form we would expect any new
programmer to employ. The old form will not be described in any great detail.

The old \character in column 6" method of line continuation is replaced by an & at the end of a line.
Only one & is essential however if a string is to be split then there should also be an & at the beginning

Fortran 90 Course Notes File: CourseNotes.ps

34 8. Language Elements

of the text on the next line in order to preserve the spacing. The continued line e�ectively begins from
the character after the &.

PRINT*, 'This is a long constant continued from line to line&

&by use of the continuation mark at both the end of the&

&continued line and at the start of the continuation line'

& is ine�ective within a comment and cannot be on a line on its own.

INTEGER SQUASHED, UP; REAL CLOSE ! Two for the price of one

The `;' allows two statements (or more) to occupy the same line and ! signi�es that the following text
is a comment.

In free format blanks become signi�cant. The rules are fairly straightforward: blanks cannot occur in
the middle of names, keywords or literals and, in general, blanks must appear between keywords and
between keywords and names. See Section 8.4 for more details.

Question 3: Reformatting Code

The following program (which is available by anonymous ftp from ftp.liv.ac.uk in the direc-
tory /pub/f90courses/progs, �lename BasicReformatQuestion.f90) has been badly laid out,
Reformat it so its is neat and readable but performs exactly the same function,

PROGRAM MAIN;INTEGER::degreesfahrenheit&

,degreescentigrade;READ*,&

degreesfahrenheit;degreescentigrade&

=5*(degreesfahrenheit-32)/9;PRINT*,&

degreesCENtiGrAde;END

8.3 Character Set

The statements of a Fortran 90 program are expressed using a carefully de�ned restricted character
set. This character set has been chosen so that it is available on almost every machine currently in
use. The Fortran 90 character set can be reproduced by virtually every display, printer or other input
/ output device which uses characters. It consists of the set of alphanumeric characters and a limited
set of punctuation marks and other special symbols. The alphanumeric characters are the upper case
letters, A-Z, the lower case letters, a-z, the digits, 0-9, and the underscore character, . There is
no di�erence between upper and lower case letters in Fortran 90. The allowed punctuation and other
special symbols are shown in the following table.

September 2, 1997 University of Liverpool

8.4. Signi�cant Blanks 35

Symbol Description Symbol Description
space = equal

+ plus - minus
* asterisk / slash
(left paren) right paren
, comma . period
' single quote " double quote
: colon ; semicolon
! shriek & ampersand
% percent < less than
> greater than $ dollar
? question mark

The last one in each column, $ and ?, do not have any special meaning in the language. Most modern
computer systems are able to process a somewhat wider character set than this, however, this set is
chosen so that it will be available on virtually every computing system in every country in the world.
The characters found on any particular machine in excess of these are very likely to either not exist on
some other machine or have very di�erent graphic representation. Apart from textual output, the case
of a letter is insigni�cant to Fortran 90 (unlike say, C,) so the di�erent cases can therefore be used to
improve the readability of the program.

A collating sequence is de�ned ([1] Section 4.3.2) and is standard ASCII; see Section 33.

8.4 Signi�cant Blanks

In free format programs spaces, or blanks, in statements can be thought of as being signi�cant.
Consecutive spaces / blanks have the same meaning as one blank. Blanks are not allowed in language
keywords. For instance, INT EGER is not the same as INTEGER. Neither are blanks allowed in names
de�ned by the programmer. The name hours could not be written as ho urs; not that any one would
be likely to do so. If a name is made up from two words it is common practice to use an underscore
as a separator. The continuation character & acts as a space and so cannot be used in the middle of
names and keywords.

Keywords and names may not be run together without spaces or some other \punctuation" to separate
them. Thus,

SUBROUTINEClear

would be illegal and not equivalent to

SUBROUTINE Clear

Likewise,

INTEGER :: a

is valid and

INT EGER :: a

Fortran 90 Course Notes File: CourseNotes.ps

36 8. Language Elements

is not.

Blanks must appear:

2 between two separate keywords

2 between keywords and names not otherwise separated by punctuation or other special characters.

INTEGER FUNCTION fit(i) ! is valid

INTEGERFUNCTION fit(i) ! is not

INTEGER FUNCTIONfit(i) ! is not

Blanks are optional between certain pairs of keywords such as: END <construct>, where <construct>
is DO, FUNCTION, PROGRAM, MODULE, SUBROUTINE and so on. Blanks are mandatory is other situations.
Adding a blank between two valid English words is generally a good idea and will be valid.

Apart from observing the above rules, spaces can be used liberally to increase the readability of pro-
grams. Thus the following statements,

POLYN=X**3-X**2+3*X-2.0

and

POLYN = X**3 - X**2 + 3*X - 2.0

are equivalent.

To sum up, the rules governing the use of blanks are largely common sense. Judicious use of blanks
and sensible use of upper and lower case can often signi�cantly clarify more complicated constructs
or statements, and some systematic convention for this use can make it very much easier to read and
hence to write correct programs. As statements can start anywhere on a line most programmers use
indentation to highlight control structure nesting for example within IF blocks and DO loops.

8.5 Comments

It is always very good practice to add descriptive comments to programs. On any line a ! character
indicates that all subsequent characters up to the end of the line are commentary. Such commentary
is ignored by the compiler. Comments are part of the program source but are intended for the human
reader and not for the machine.

PROGRAM Saddo

!

! Program to evaluate marriage potential

!

LOGICAL :: TrainSpotter ! Do we spot trains?

LOGICAL :: SmellySocks ! Have we smelly socks?

INTEGER :: i, j ! Loop variables

The one exception to above is if the ! appears in a character context, for example, in

September 2, 1997 University of Liverpool

8.6. Names 37

PRINT*, "No chance of ever marrying!!!"

the ! does not initiate a comment.

A comment can contain any of the characters available on the computer being used. A comment is not
restricted to use the Fortran character set. A program containing comments using characters outside
this set may still be portable but the comments may look somewhat odd if the program is moved to
another system with a di�erent extended set of characters.

With modern compilation systems it is often possible to give the compiler `hints' by annotating programs
with speci�cally structured comments which are interpreted and acted upon to produce e�cient code.
The HPF (High Performance Fortran) language is implemented in this way.

! Next line is an HPF directive

!HPF$ PROCESSORS P(3,3,3)

! Switch to fixed format

!DIR$ FIXED_FORM

8.6 Names

The Fortran language de�nes a number of names, or keywords, such as PRINT, INTEGER, MAX, etc.
The spelling of these names is de�ned by the language. There are a number of entities that must be
named by the programmer, such as variables, procedures, etc. These names must be chosen to obey
a few simple rules. A name can consist of up to 31 alphanumeric characters (letters or digits) plus
underscore. The �rst character in any name must be a letter. In names, upper and lower case letters
are equivalent. The following are valid Fortran names,

A, aAa, INCOME, Num1, N12O5, under_score

The following declarations are incorrect statements owing to invalid names,

INTEGER :: 1A ! does not begin with a letter

INTEGER :: A_name_made_up_of_more_than_31_letters ! too long, 38 characters

INTEGER :: Depth:0 ! contains an illegal character ":"

INTEGER :: A-3 ! subtract 3 from A is meaningless here

The underscore should be used to separate words in long names

CHARACTER(LEN=12) :: user_name ! valid name

CHARACTER(LEN=12) :: username ! different valid name

With this and the new long names facility in Fortran 90 symbolic names should be readable, signi�cant
and descriptive. It is worth spending a minute or so choosing a good name which other programmers
will be able to understand.

8.7 Statement Ordering

Fortran has some quite strict rules about the order of statements. Basically in any program or procedure
the following rules must be used:

Fortran 90 Course Notes File: CourseNotes.ps

38 8. Language Elements

1. The program heading statement must come �rst, (PROGRAM, FUNCTION or SUBROUTINE). A
PROGRAM statement is optional but its use is recommended.

2. All the speci�cation statements must precede the �rst executable statement. Even though DATA

statements may be placed with executable text it is far clearer if they lie in the declaration area.
It is also a good idea to group FORMAT statements together for clarity.

3. The executable statements must follow in the order required by the logic of the program.

4. The program or procedure must terminate with an END statement.

Within the set of speci�cation statements there is relatively little ordering required, however, in general
if one entity is used in the speci�cation of another, it is normally required that it has been previously
de�ned. In other words, named constants (PARAMETERs) must be declared before they can be used as
part of the declaration of other objects.

The following table details the prescribed ordering:

PROGRAM, FUNCTION, SUBROUTINE, MODULE or BLOCK DATA statement

USE statement

IMPLICIT NONE

PARAMETER statement IMPLICIT statements

FORMAT

and ENTRY

statements

PARAMETER and DATA

statements
Derived-Type De�nition, Interface blocks,
Type declaration statements, Statement
function statements and speci�cation
statements

DATA statements Executable constructs

CONTAINS statement

Internal or module procedures

END statement

Execution of a program begins at the �rst executable statement of the MAIN PROGRAM, when a procedure
is called execution begins with the �rst executable statement after the invoked entry point. The non-
executable statements are conceptually `executed' (!) simultaneously on program initiation, in other
words they are referenced once and once only when execution of the main program begins.

There now follows a explanation of the table,

September 2, 1997 University of Liverpool

8.7. Statement Ordering 39

2 There can be only 1 main PROGRAM,

2 there may be many uniquely named FUNCTIONs and SUBROUTINEs program units (procedures).

2 there may be any number of uniquely named MODULEs which are associated with a program
through a USE statement. Modules are very exible program units and are used to package a
number of facilities (for example, procedures, type de�nitions, object declarations, or semantic
extensions). Their use is very much encouraged and they replace a number of unsafe features of
Fortran 77.

2 There can be only one BLOCK DATA subprogram | these will not be described as part of this
course | their purpose is to de�ne global constants or global initialisation and this is best done
by a MODULE and USE statement.

2 USE statement:

This attaches a module whose entities become use-associated with the program unit. When a
module is used its public contents are accessible as if they had been declared explicitly in the
program unit. Modules may be pre-compiled (like a library) or may be written by the programmer.

Any global entities should be placed in a module and then used whenever access is required.

2 The IMPLICIT NONE statement should be placed after a USE statement. Its use is implored.

2 FORMAT and ENTRY statements. Format statements should be grouped together somewhere in
the code. ENTRY statements provide a mechanism to `drop' into a procedure halfway through
the executable code. Their use is outmoded and strongly discouraged owing to its dangerous
nature.

2 PARAMETER statement and IMPLICIT statement:

IMPLICIT statements should not be used, IMPLICIT NONE should be the only form of implicit
typing considered. (IMPLICIT statements allow the user to rede�ne the implication of an object's
�rst letter in determining what its implicit type will be if it is not declared. Cannot have an
IMPLICIT statement if there is an IMPLICIT NONE line.)

PARAMETER statements, it is suggested that the attributed (Fortran 90) style of PARAMETER
declaration be used.

2 DATA statements should (but do not have to) be placed in the declaration, common practice puts
them after the declarations and before the executables.

2 Interface blocks are generally placed at the head of the declarations and are grouped together.

Statement functions are a form of in-line statement de�nition, internal procedures should be used
instead.

2 executable statements are things like DO statements, IF constructs and assignment statements.

2 CONTAINS separates the \main" program unit from any locally visible internal procedures.

2 the internal procedures follow the same layout as a (normal) procedure except that they cannot
contain a second level of internal procedure.

2 the END statement is essential to delimit the current program unit.

Fortran 90 Course Notes File: CourseNotes.ps

40 9. Data Objects

9 Data Objects

9.1 Intrinsic Types

Fortran 90 has three broad classes of object type,

2 character;

2 boolean;

2 numeric.

these give rise to �ve simple intrinsic types, known a default types,

2 CHARACTER for strings of one or more characters;

2 LOGICAL for objects which have the values true or false;

2 REAL (and DOUBLE PRECISION) for approximate, possibly fractional numbers;

2 INTEGER for exact whole numbers;

2 COMPLEX for representing numbers of the form: x+ iy.

For example,

CHARACTER :: sex ! letter

CHARACTER(LEN=12) :: name ! string

LOGICAL :: wed ! married?

REAL :: height

DOUBLE PRECISION :: pi ! 3.14...

INTEGER :: age ! whole No.

COMPLEX :: val ! x + iy

Each type has

2 a name

2 a set of valid values

2 a means to denote values

2 a set of operators

Note,

2 Most programming languages have the same broad classes of objects.

2 The three broad classes cannot be intermixed without some sort of type coercion being performed.

2 REAL and DOUBLE PRECISION objects are approximate. DOUBLE PRECISION should not now be
used. In Fortran 77 an object of this type had greater precision than REAL, in Fortran 90 the
precision of a REAL object may be speci�ed making the DOUBLE PRECISION data type redundant.

2 All numeric types have �nite range.

2 A default type is not parameterised by a kind value.

September 2, 1997 University of Liverpool

9.2. Literal Constants 41

9.2 Literal Constants

A literal constant is an entity with a �xed value:

+12345 ! INTEGER

2. ! REAL

1.0 ! REAL

-6.6E-06 ! REAL

-6.6D-06 ! DOUBLE PRECISION

.FALSE. ! LOGICAL

'Mau''dib' ! CHARACTER

"Mau'dib" ! CHARACTER

Note,

2 there are only two LOGICAL values.

2 integers are represented by a sequence of digits with a + or - sign, + signs are optional.

2 REAL constants contain a decimal point or an exponentiation symbol, INTEGER constants do not.

2 character literals are delimited by the double or single quote symbols, " and '.

2 two occurrences of the delimiter inside a string produce one occurrence on output; for example
'Mau''dib' but not "Mau''dib" because of the di�ering delimiters;

2 there is only a �nite range of values that numeric literals can take.

2 constants may also include a kind speci�er.

9.3 Implicit Typing

If a variable is referenced but not declared (in its scoping unit) then, by default, it is implicitly declared.
The type that it assumes depends on the �rst letter,

2 I, J, K, L, M and N represent integers;

2 all other letters de�ne real variables.

This short cut is potentially very dangerous as a misspelling of a variable name can declare and assign
to a brand new variable with the user being totally unaware.

Implicit typing should always be turned o� by adding:

IMPLICIT NONE

as the �rst line after any USE statements. In this way the user will be informed of any undeclared
variables used in the program.

Consider,

Fortran 90 Course Notes File: CourseNotes.ps

42 9. Data Objects

DO 30 I = 1.1000

...

30 CONTINUE

in �xed format with implicit typing this declares a REAL variable DO30I and sets it to 1.1000 instead
of performing a loop 1000 times! Legend has it that the example sighted caused the crash of the
American Space Shuttle. An expensive missing comma!

9.4 Numeric and Logical Declarations

Variables of a given type should be declared in type declaration statements at the start of a program
unit. A simpli�ed syntax follows,

< type> [,< attribute-list>] :: < variable-list> [=< value>]

The :: is actually optional, however, it does no harm to use it, moreover, if < attribute-list > or
=< value> are present then the :: is obligatory.

The following are all valid declarations,

REAL :: x

INTEGER :: i,j

LOGICAL, POINTER :: ptr

REAL, DIMENSION(10,10) :: y, z(10)

DOUBLE PRECISION, DIMENSION(0:9,0:9) :: w

The DIMENSION attribute declares a 10� 10 array, this can be overridden as with z which is declared
as a 1D array with 10 elements.

< attribute-list> represents a list of attributes such as PARAMETER, SAVE, INTENT, POINTER, TARGET,
DIMENSION, (for arrays) or visibility attributes. An object may be given more than one attribute per
declaration but some cannot be mixed (such as PARAMETER and POINTER).

9.5 Character Declarations

Character variables can be declared in a similar way to numeric types using a CHARACTER statement.
CHARACTER variables can

2 refer to one character;

2 refer to a string of characters which is achieved by adding a length speci�er to the object
declaration.

A simpli�ed syntax follows,

< type>[(LEN=< length-spec>)] [,< attribute-list>] [::] < variable-list> [=< value>]

If < attribute-list> or =< value> are present then so must be ::.

The following are all valid declarations,

September 2, 1997 University of Liverpool

9.6. Constants (Parameters) 43

CHARACTER(LEN=10) :: name

CHARACTER :: sex

CHARACTER(LEN=32) :: str

In the same way as the DIMENSION attribute was overridden in the example of Section 9.4 so can the
string length declaration (speci�ed by LEN=); this is achieved using the * notation. If a DIMENSION

speci�er is present it can also be overridden. The length speci�er must come after the dimension if
both are being overridden.

CHARACTER(LEN=10) :: name, sex*1, str*32

CHARACTER(LEN=10), DIMENSION(10,10) :: tom(10)*2, dick, harry(10,10,10)*20

CHARACTER, POINTER :: P2ch

The �rst line is exactly the same as the previous declaration.

There is a substantial di�erence between a character variable of 10 characters (CHARACTER(LEN=10)
or CHARACTER*10) and an array of 10 elements; the �rst is scalar and the second is non-scalar.

Other attributes can be added in the same way as for numeric types (see Section 9.4).

9.6 Constants (Parameters)

Symbolic constants, oddly known as parameters in Fortran, can easily be set up either in an attributed
declaration or in a PARAMETER statement (it is recommended that the attributed form be used):

INTEGER price_of_fags ! F77 style - not recommended

PARAMETER (price_of_fags = 252) ! F77 style - not recommended

REAL, PARAMETER :: pi = 3.14159 ! F90 style

CHARACTER constants can assume their length from the associated literal (LEN=*), they can also be
declared to be �xed length:

CHARACTER(LEN=*), PARAMETER :: son = 'bart', dad = "Homer"

Parameters should be used:

2 if it is known that a variable will only take one value;

The variable is forced to be unchanged throughout the program. If any statement tries to change
the value an error will result.

2 for legibility where a `magic value' occurs in a program such as �;

Symbolic names are easier to understand than a meaningless number.

2 for maintainability when a `constant' value could feasibly be changed.

The value of the constant can be adjusted throughout the program by changing 1 line.

Fortran 90 Course Notes File: CourseNotes.ps

44 9. Data Objects

9.7 Initialisation

When a program is loaded into the computers memory, the contents of declared variables are normally
unde�ned, it is clearly useful to override this and give variables useful initial values. For example,

INTEGER :: i = 5, j = 100

REAL :: max = 10.D5

CHARACTER(LEN=5) :: light = 'Amber'

CHARACTER(LEN=9) :: gumboot = 'Wellie'

LOGICAL :: on = .TRUE., off = .FALSE.

For CHARACTER variables, if the object and initialisation expression are of di�erent lengths then either:

2 the object will be padded with blanks on the RHS, or

2 the initialisation expression will be truncated on the right so it will �t.

Variables can be initialised in a number of ways

2 PARAMETER statements,

2 DATA statements,

2 type declaration statements (with an =< expression>) clause.

Limited expressions known as initialisation expressions can also be used in type declaration statements.
These expression must be able to be evaluated when the program is compiled | if you can't work out
the values then neither can the compiler. Initialisation expressions can contain PARAMETERs or literals.
Arrays may be initialised by specifying a scalar value or by using a conformable array constructor,
(/.../).

REAL, PARAMETER :: pi = 3.141592

REAL :: radius = 3.5

REAL :: circum = 2 * pi * radius

INTEGER :: a(1:4) = (/1,2,3,4/)

In general, intrinsic functions cannot be used in initialisation expressions, however, the following intrin-
sics may be used:

2 REPEAT,

2 RESHAPE,

2 SELECTED INT KIND,

2 SELECTED REAL KIND,

2 TRANSFER,

2 TRIM.

2 LBOUND,

September 2, 1997 University of Liverpool

9.8. Examples of Declarations 45

2 UBOUND,

2 SHAPE,

2 SIZE,

2 KIND,

2 LEN,

2 BIT SIZE,

2 numeric inquiry intrinsics, for, example, HUGE, TINY, EPSILON.

In this context the arguments to these functions must be initialisation expressions.

9.8 Examples of Declarations

The following declarations show how careful choice of data type, name and inclusion of comments can
help readability:

CHARACTER(LEN=20) :: Location ! Name of hospital

CHARACTER :: Ward ! Ward, e.g., A, B, C etc

INTEGER :: NumBabiesBorn = 0 ! Sum total of births

REAL :: TimeElapsed = 0.0 ! Time since 1st birth (hours)

REAL :: MaxTimeTwixtBirths = 0.0 ! longest gap between births

REAL :: AveTimeTwixtBirths ! average gap between births

REAL :: TimeSinceLastBirth ! gap since the last birth

LOGICAL :: NHS ! Is it an NHS hospital

There is nothing wrong with using verbose variable names and augmenting declarations with comments
explaining their use.

It is important to use an appropriate data type for an object, for example, the above variable, Location,
is the name of a hospital, it is clearly appropriate to use a CHARACTER string here. (We have assumed
that the name can be represented in 20 letters.) The second variable, Ward only needs to contain one
letter of the alphabet, this is reected in its declaration. It is also a good idea to initialise any variables
that are used to hold some sort of counter. In the above code fragment, we have 3 such examples:
NumBabiesBorn is incremented by one each time there is a new birth, this value must always be a
whole number so INTEGER is the appropriate data type; TimeElapsed measures the time in hours
since the �rst birth, in order to be accurate, we need to be able to represent fractions of hours so a
REAL variable is in order, when the program begins to run zero time will have elapsed which explains
the initialisation; the �nal example is MaxTimeTwixtBirths the longest spell of time between births,
again it is a good idea to initialise the variable to a sensible value owing to the way it will probably be
used in the program. It is likely that the following will appear;

IF (TimeSinceLastBirth > MaxTimeTwixtBirths) THEN

MaxTimeTwixtBirths = TimeSinceLastBirth

END IF

The AveTimeTwixtBirths variable will also have to represent a non-whole number so REAL is the
obvious choice. The variable, TimeSinceLastBirth is used to store the current time gap between
births and is, in this sense, a temporary variable. LOGICAL variables are ideal when one of two values
needs to be stored, here we wish to know whether the hospital is NHS-funded or not.

Fortran 90 Course Notes File: CourseNotes.ps

46 9. Data Objects

Question 4: Declaration Format

Which of the following are incorrect declarations and why? (If you think a declaration may be
correct in a given situation then say what the situation would be.)

1. ReAl :: x

2. CHARACTER :: name

3. CHARACTER(LEN=10) :: name

4. REAL :: var-1

5. INTEGER :: 1a

6. BOOLEAN :: loji

7. DOUBLE :: X

8. CHARACTER(LEN=5) :: town = "Glasgow"

9. CHARACTER(LEN=*) :: town = "Glasgow"

10. CHARACTER(LEN=*), PARAMETER :: city = "Glasgow"

11. INTEGER :: pi = +22/7

12. LOGICAL :: wibble = .TRUE.

13. CHARACTER(LEN=*), PARAMETER :: "Bognor"

14. REAL, PARAMETER :: pye = 22.0/7.0

15. REAL :: two pie = pye*2

16. REAL :: a = 1., b = 2

17. LOGICAL(LEN=12) :: frisnet

18. CHARACTER(LEN=6) :: you know = 'y'know"

19. CHARACTER(LEN=6) :: you know = "y'know"

20. INTEGER :: ia ib ic id

(in free format source form)

21. DOUBLE PRECISION :: pattie = +1.0D0

22. DOUBLE PRECISION :: pattie = -1.0E-0

23. LOGICAL, DIMENSION(2) bool

24. REAL :: poie = 4.*atan(1.)

25. declare the following objects,

Name Status Type Initial Value
feet variable integer -
miles variable real -
town variable character (� 20 letters) -
home town constant character < your home town>
in uk constant logical < is your home town in UK?>
sin half constant real sin(0:5) = 0:47942554

September 2, 1997 University of Liverpool

47

10 Expressions and Assignment

10.1 Expressions

Each of the three broad type classes has its own set of intrinsic (in-built) operators, these are combined
with operands to form expressions. Expressions are made from one operator (e.g., +, -, *, /, // and
**) and at least one operand. Operands are also expressions.

Expressions have types derived from their operands; they are either of intrinsic type or a user de�ned
type. For example,

2 NumBabiesBorn+1| numeric valued

2 "Ward "//Ward | character valued

2 TimeSinceLastBirth .GT. MaxTimeTwixtBirths| logical valued

In addition to the intrinsic operations:

2 operators may be de�ned by the user, for example, .INVERSE.. These de�ned operators (with
1 or 2 operands) are speci�ed in a procedure and can be applied to any type or combination of
types. The operator functionality is given in a procedure which must then be mentioned in an
interface block. Such operators are very powerful when used in conjunction with derived types
and modules as a package of objects and operators.

2 intrinsic operators may be overloaded; when using a derived type the user can specify exactly
what each existing operator means in the context of this new type.

10.2 Assignment

Expressions are often used in conjunction with the assignment operator, =, to give values to objects.
This operator,

2 is de�ned between all intrinsic numeric types. The two operands of = (the LHS and RHS) do
not have to be the same type.

2 is de�ned between two objects of the same user-de�ned type.

2 may be explicitly overloaded so that assignment is meaningful in situations other than those
above.

Examples,

a = b

c = SIN(.7)*12.7

name = initials//surname

bool = (a.EQ.b.OR.c.NE.d)

The LHS is an object and the RHS is an expression.

Fortran 90 Course Notes File: CourseNotes.ps

48 10. Expressions and Assignment

10.3 Intrinsic Numeric Operations

The following operators are valid for numeric expressions,

2 ** exponentiation, a dyadic (\takes two operands") operator, for example, 10**2, (evaluated
right to left);

2 * and / multiply and divide, dyadic operators, for example, 10*7/4;

2 + and - plus and minus or add and subtract, a monadic (\takes one operand") and dyadic
operators, for example, -4 and 7+8-3;

All the above operators can be applied to numeric literals, constants, scalar and array objects with the
only restriction being that the RHS of the exponentiation operator must be scalar.

Example,

a = b - c

f = -3*6/5

Note that operators have a prede�ned precedence, which de�nes the order that they are evaluated in,
(see Section 10.7).

Question 5: Area Of a Circle

Write a simple program to read in the radius and calculate the area of the corresponding circle
and volume of the sphere. Demonstrate correctness by calculating the area and volume using radii of
2, 5, 10 and -1.

Area of a circle,
area = �r2 (1)

Volume of a sphere,

volume =
4�r3

3
(2)

Hint 1: place the READ, the area calculation and the PRINT statement in a loop as follows. A program
template (which is available by anonymous ftp from ftp.liv.ac.uk in the directory /pub/f90courses/progs,
�lename BasicAreaOfCircleQuestion.f90) is given below.

PROGRAM Area

DO

PRINT*, "Type in the radius, a negative value will terminate"

READ*, radius

IF (radius .LT. 0) EXIT

... area calculation

PRINT*, "Area of circle with radius ",&

radius, " is ", area

PRINT*, "Volume of sphere with radius ",&

radius, " is ", volume

September 2, 1997 University of Liverpool

10.4. Relational Operators 49

END DO

END PROGRAM Area

In this way when a negative radius is supplied the program will terminate.

Hint 2: use the value 3.14159 for �.

10.4 Relational Operators

The following relational operators deliver a logical result:

2 .GT. | greater than.

2 .GE. | greater than or equal to.

2 .LE. | less than or equal to.

2 .LT. | less than.

2 .NE. | not equal to.

2 .EQ. | equal to.

for example,

i .GT. 12

is an expression delivering a .TRUE. or .FALSE. result.

These above operators are equivalent to the following:

2 > | greater than.

2 >= | greater than or equal to.

2 <= | less than or equal to.

2 < | less than.

2 = = | not equal to.

2 = | equal to.

for example,

i > 12

Both sets of symbols may be used in a single statement.

Relational operators:

2 compare the values of two operands.

Fortran 90 Course Notes File: CourseNotes.ps

50 10. Expressions and Assignment

2 deliver a logical result.

2 can be applied to numeric operands (restrictions on COMPLEX which can only use .EQ. and .NE.).

2 can be applied to default CHARACTER objects | both objects are made to be the same length
by padding the shorter with blanks. Operators refer to ASCII order (see Appendix 33).

2 cannot be applied to LOGICAL objects, for example,

(bool .NE. .TRUE.)

is not a valid expression but,

(.NOT.bool)

is.

2 are used (in scalar) form in IF statements (see Section 11.1) and elementally in the WHERE

statement (see Section 15.17).

Consider,

bool = i.GT.j

IF (i.EQ.j) c = D

IF (i == j) c = D

The example demonstrates,

2 simple logical assignment using a relational operator,

2 IF statements using both forms of relational operators,

When using real-valued expressions (which are approximate) .EQ. and .NE. have no real meaning.

REAL :: Tol = 0.0001

IF (ABS(a-b) .LT. Tol) same = .TRUE.

10.5 Intrinsic Logical Operations

A LOGICAL or boolean expression returns a .TRUE. / .FALSE. result. The following operators are
valid with LOGICAL operands,

2 .NOT. | monadic negation operator which gives .TRUE. if operand is .FALSE., for example,
.NOT.(a .LT. b).

2 .AND. | logical and operator. .TRUE. if both operands are .TRUE..

2 .OR. | logical or operator. .TRUE. if at least one operand is .TRUE..

2 .EQV. | .TRUE. if both operands are the same.

2 .NEQV. | .TRUE. if both operands are di�erent.

September 2, 1997 University of Liverpool

10.6. Intrinsic Character Operations 51

The following are examples of logical expressions,

REAL :: a, b, x, y

LOGICAL :: l1, l2

...

l1 = (.NOT.(x.EQ.y.AND.a.EQ.b))

l2 = (l1.EQV.((x.GT.a.OR.y.LT.b).NEQV.a.EQ.b))

10.6 Intrinsic Character Operations

10.6.1 Character Substrings

Consider,

CHARACTER(LEN=*), PARAMETER :: string = "abcdefgh"

substrings can be taken,

2 string is `abcdefgh' (the whole string),

2 string(1:1) is `a' (the �rst character),

2 string(2:4) is `bcd' (2nd, 3rd and 4th characters),

2 string(1) is an error (the substring must be speci�ed from a position to a position, a single
subscript is no good).

2 string(1:) is `abcdefgh'.

2 string(:1) is `a'.

10.6.2 Concatenation

There is only one intrinsic character operator, the concatenation operator, //. Most string manipulation
is performed using intrinsic functions.

CHARACTER(LEN=4), PARAMETER :: name = "Coal"

CHARACTER(LEN=10) :: song = "Firey "//name

PRINT*, "Rowche "//"Rumble"

PRINT*, song(1:1)//name(2:4)

would produce

Rowche Rumble

Foal

The example joins together two strings and then the �rst character of song and the 2nd, 3rd and 4th
of name. Note that // cannot be mixed with other types or kinds.

Fortran 90 Course Notes File: CourseNotes.ps

52 10. Expressions and Assignment

10.7 Operator Precedence

The following table depicts the order in which operators are evaluated:

Operator Precedence Example

user-de�ned monadic Highest .INVERSE.A

** � 10**4

* or / � 89*55

monadic + or - � -4

dyadic + or - � 5+4

// � str1//str2

.GT., >,.LE., <=, etc � A > B

.NOT. � .NOT.Bool

.AND. � A.AND.B

.OR. � A.OR.B

.EQV. or .NEQV. � A.EQV.B

user-de�ned dyadic Lowest X.DOT.Y

In an expression with no parentheses, the highest precedence operator is combined with its operands
�rst; In contexts of equal precedence left to right evaluation is performed except for **.

Other relevant points are that the intrinsically de�ned order cannot be changed which means that
user de�ned operators have a �xed precedence (at the top and bottom of the table depending on the
operator type). The operator with the highest precedence has the tightest binding; from the table
user-de�ned monadic operators can be seen to be the most tightly binding.

The ordering of the operators is intuitive and is comparable to the ordering of other languages. The
evaluation order can be altered by using parenthesis; expressions in parentheses are evaluated �rst. In
the context of equal precedence, left to right evaluation is performed except for ** where the expression
is evaluated from right to left. This is important when teetering around the limits of the machines
representation. Consider A-B+C and A+C-B, if A were the largest representable number and C is positive
and smaller than B; the �rst expression is OK but the second will crash the program with an overow
error.

One of the most common pitfalls occurs with the division operator | it is good practice to put
numerator and denominator in parentheses. Note:

(A+B)/C

is not the same as

A+B/C

but

September 2, 1997 University of Liverpool

10.8. Precedence Example 53

(A*B)/C

is equivalent to

A*B/C

This is because the multiplication operator binds tighter than the addition operator, however,

A/B*C

is not equivalent to

A/(B*C)

because of left to right evaluation.

The syntax is such that two operators cannot be adjacent; one times minus one is written 1*(-1) and
not 1*-1. (This is the same as in most languages.)

10.8 Precedence Example

The precedence is worked out as follows

1. in an expression �nd the operator(s) with the tightest binding.

2. if there are more than one occurrence of this operator then the separate instances are evaluated
left to right.

3. place the �rst executed subexpression in brackets to signify this.

4. continue with the second and subsequent subexpressions.

5. move to next most tightly binding operator and follow the same procedure.

It is easy to make mistakes by forgetting the implications of precedence. The following expression,

x = a+b/5.0-c**d+1*e

is equivalent to

x = ((a+(b/5.0))-(c**d))+1*e

The following procedure has been followed to parenthesise the expression,

2 tightest binding operator is **. This means c**d is the �rst executed subexpression so should
be surrounded by brackets.

2 / and * are the second most tightly binding operators and expressions involving them will be
evaluated next, put b/5.0 and 1*e in brackets.

Fortran 90 Course Notes File: CourseNotes.ps

54 10. Expressions and Assignment

2 + and - have the next highest precedence. Since they are of equal precedence, occurrences are
evaluated from left

2 at last the assignment is made.

Likewise, the following expression,

.NOT.A.OR.B.EQV.C.AND.D.OR..NOT.E

is equivalent to

((.NOT.A).OR.B).EQV.((C.AND.D).OR.(.NOT.E))

here,

2 the tightest binding operator is: .NOT. followed by .AND. followed by .OR..

2 the two subexpressions containing the monadic .NOT. are e�ectively evaluated �rst, as there are
two of these the leftmost, .NOT.A is done �rst followed by .NOT.E.

2 the subexpression C.AND.D is evaluated next followed by .OR. (left to right)

2 �nally the .EQV. is executed

Parentheses can be added to any expression to modify the order of evaluation.

Question 6: Operator Precedence

Rewrite the following expression so that it contains the equivalent symbolic relational operators
and then add parenthesis to indicate the order of evaluation,

.NOT.A.AND.B.EQV.C.OR.D.AND.E.OR.x.GT.y.AND.y.eq.z

Add parenthesis to this expression to indicate the order of evaluation,

-a*b-c/d**e/f+g**h+1-j/k

10.9 Precision Errors

Each time two real numbers are combined there is a slight loss of accuracy in the result. After many
such operations such 'round-o�' errors become noticeable. Catastrophic accuracy loss often arises
because two values that are almost equal are subtracted, the subtraction may cancel the leading digits
and promotes errors very rapidly from low order digits to high order ones.

For example, consider, the numbers .123456 and .123446; these may be approximated in memory as
.123457 and .123445 respectively, whereas the true di�erence is .100000D-4 the representation may
give .130000D-4, a 30% error.

September 2, 1997 University of Liverpool

10.9. Precision Errors 55

x = 0.123456; y = 0.123446

PRINT*, "x = ",x," y = ",y

PRINT*, "x-y = ",x-y," but should be 0.100d-4"

May produce:

x = 0.123457 y = 0.123445

x-y = 0.130d-4 but should be 0.100d-4

A whole branch of Numerical Analysis is dedicated to minimising this class of errors in algorithms.

Fortran 90 Course Notes File: CourseNotes.ps

Module 4:
Control Constructs, Intrinsics

and Basic I/O

11 Control Flow

All structured programming languages need constructs which provide a facility for conditional execu-
tion. The simplest method of achieving this functionality is by using a combination of IF and GOTO

which is exactly what Fortran 66 supported. Fortran has progressed since then and now includes a
comprehensive basket of useful control constructs. Fortran 90 supports:

2 conditional execution statements and constructs, (IF statements, and IF ... THEN ... ELSEIF...
ELSE ... END IF);

These are the basic conditional execution units. They are useful if a section of code needs to
be executed depending on a series of logical conditions being satis�ed. If the �rst condition
in the IF statement is evaluated to be true then the code between the IF and the next ELSE,
ELSEIF or ENDIF is executed. If the predicate is false then the second branch of the construct
is entered. This branch could be either null, an ELSE or an ELSEIF corresponding to no action,
the default action or another evaluation of a di�erent predicate with execution being dependent
upon the result of the current logical expression. Each IF statement has at least one branch
and at most one ELSE branch and may contain any number of ELSEIF branches. Very complex
control structures can be built up using multiply nested IF constructs.

Before using an IF statement, a programmer should be convinced that a SELECT CASE block or
a WHERE assignment block would not be more appropriate.

2 loops, (DO ... END DO);

This is the basic form of iteration mechanism. This structure allows the body of the loop to be
executed a number of times. The number of iterations can be a constant, a variable (expression)
or can be dependent on a particular condition being satis�ed. DO loops can be nested.

2 multi-way choice construct, (SELECT CASE);

A particular branch is selected depending upon the value of the case expression. Due to the
nature of this construct it very often works out (computationally) cheaper than an IF block
with equivalent functionality. This is because in a SELECT CASE block a single control expression
is evaluated once and then its (single) result is compared with each branch. With an IF ..
ELSEIF block a di�erent control expression must be evaluated at each branch. Even if all control
expressions in an IF construct were the same and were simply compared with di�erent values,
the general case would dictate that the SELECT CASE block is more e�cient.

and less importantly,

2 unconditional jump statements, (GOTO);

Direct jump to a labelled line. This is a very powerful statement, it is very useful and very open
to abuse. Unstructured jumps can make a program virtually impossible to follow, the GOTO must

56

11.1. IF Statement 57

be used with care. It is particularly useful for handling exceptions, that is to say, when emergency
action is needed to be taken owing to the discovery of an unexpected error.

2 I/O exception branching, (ERR=, END=, EOR=);

This is a slightly oddball feature of Fortran in the sense that there is currently no other form of
exception handling in the language. (The feature originated from Fortran 77.) It is possible
to add quali�ers to I/O statements to specify a jump in control should there be an unexpected
I/O data error, end of record or should the end of a �le be encountered.

It is always good practice to use at least the ERR= quali�er in I/O statements.

11.1 IF Statement

This is the most basic form of conditional execution in that there is only an option to execute one
statement or not | the general IF construct allows a block of code to be executed. The basic form
is,

IF(< logical-expression>)< exec-stmt>

If the .TRUE. / .FALSE. valued expression, < logical-expression >, evaluates to .TRUE. then the
< exec-stmt> is executed otherwise control of the program passes to the next line. This type of IF
statement still has its use as it is a lot less verbose than a block-IF with a single executable statement.

For example,

IF (logical_val) A = 3

If logical val is .TRUE. then A gets set to 3 otherwise it does not.

A logical expression is often expressed as:

< expression>< relational-operator>< expression>

For example,

IF (x .GT. y) Maxi = x

IF (i .NE. 0 .AND. j .NE. 0) k = 1/(i*j)

IF (i /= 0 .AND. j /= 0) k = 1/(i*j) ! same

As REAL numbers are represented approximately, it makes little sense to use the .EQ. and .NE.

relational operators between real-valued expressions. For example there is no guarantee that 3.0 and
1.5 * 2.0 are equal. If two REAL numbers / expressions are to be tested for equality then one should
look at the size of the di�erence between the numbers and see if this is less than some sort of tolerance.

REAL :: Tol = 0.0001

IF (ABS(a-b) .LT. Tol) same = .TRUE.

Consider the IF statement

Fortran 90 Course Notes File: CourseNotes.ps

58 11. Control Flow

IF (I > 17) Print*, "I > 17"

this maps onto the following control ow structure,

I > 17

IF (I > 17)

PRINT*, "I > 17"

! Next statement

I <= 17

Figure 1: Schematic Diagram of an IF Statement

11.2 IF Construct

The block-IF is more exible than the single statement IF since there can be a number of alternative
mutually exclusive branches guarded by (di�erent) predicates. The control ow is a lot more structured
than if a single statement IF plus GOTO statements were used. The scenario is that the predicates in
the IF or ELSEIF lines are tested in turn, the �rst one which evaluates as true transfers control to the
appropriate inner block of code; when this has been completed control passes to the ENDIF statement
and thence out of the block. If none of the predicates are true then the < else-block> (if present) is
executed.

The simplest form of the IF construct is equivalent to the IF statement, in other words, if a predicate
is .TRUE. then an action is performed.

Consider the IF ... THEN construct

IF (I > 17) THEN

Print*, "I > 17"

END IF

this maps onto the following control ow structure,

September 2, 1997 University of Liverpool

11.2. IF Construct 59

I > 17

I <= 17

END IF

IF (I > 17) THEN

PRINT*, "I > 17"

Figure 2: Visualisation of an IF ... THEN Construct

It is a matter of personal taste whether the above construct or just the simple IF statement is used
for this sort of case.

The IF construct may contain an ELSE branch, a simple example could be,

IF (I > 17) THEN

Print*, "I > 17"

ELSE

Print*, "I <= 17"

END IF

this maps onto the following control ow structure,

END IF

PRINT*, "I<=17"PRINT*, "I>17"

IF (I>17) THEN

I > 17 ELSE

Figure 3: Visualisation of an IF ... THEN ... ELSE Construct

The construct may also have an ELSEIF branch:

IF (I > 17) THEN

Fortran 90 Course Notes File: CourseNotes.ps

60 11. Control Flow

Print*, "I > 17"

ELSEIF (I == 17)

Print*, "I == 17"

ELSE

Print*, "I < 17"

END IF

Both ELSE and ELSEIF are optional and there can be any number of ELSEIF branches. The above
maps to the following control ow structure

PRINT*, "I>17"

ENDIF

PRINT*, "I==17" PRINT*, "I<17"

ELSEIF(I==17)THEN

IF (I > 17) THEN

I == 17

I > 17 I >= 17

ELSE

Figure 4: Visualisation of an IF ... THEN ... ELSEIF Construct

The formal syntax is,

[< name>:]IF(< logical-expression>)THEN
< then-block>

[ELSEIF(< logical-expression>)THEN [< name>]
< elseif-block>

...]
[ELSE [< name>]

< else-block>]
END IF [< name>]

The �rst branch to have a .TRUE. valued < logical-expression> is the one that is executed. If none
are found then the < else-block>, if present, is executed.

For example,

IF (x .GT. 3) THEN

CALL SUB1

ELSEIF (x .EQ. 3) THEN

CALL SUB2

September 2, 1997 University of Liverpool

11.3. Nested and Named IF Constructs 61

ELSEIF (x .EQ. 2) THEN

CALL SUB3

ELSE

CALL SUB4

ENDIF

(A further IF construct may appear in the < then-block>, the < else-block> or the < elseif-block>.
This is now a nested IF structure.)

Statements in either the < then-block>, the < else-block> or the < elseif-block> may be labelled
but jumps to such labelled statements are permitted only from within the block containing them.
Entry into a block-IF construct is allowed only via the initial IF statement. Transfer out of either the
< then-block>, the <else-block> or the <elseif-block> is permitted but only to a statement entirely
outside of the whole block de�ned by the IF...END IF statements. A transfer within the same block-IF
between any of the blocks is not permitted.

Certain types of statement, e.g., END SUBROUTINE, END FUNCTION or END PROGRAM, statement are not
allowed in the < then-block>, the < else-block> or the < elseif-block>.

11.3 Nested and Named IF Constructs

All control constructs can be both named and nested, for example,

outa: IF (a .NE. 0) THEN

PRINT*, "a /= 0"

IF (c .NE. 0) THEN

PRINT*, "a /= 0 AND c /= 0"

ELSE

PRINT*, "a /= 0 BUT c == 0"

ENDIF

ELSEIF (a .GT. 0) THEN outa

PRINT*, "a > 0"

ELSE outa

PRINT*, "a must be < 0"

ENDIF outa

Here the names are only cosmetic and are intended to make the code clearer (cf DO-loop names which
do). If a name is given to the IF statement then it must be present on the ENDIF statement but not
necessarily on the ELSE or ELSEIF statement. If a name is present on the ELSE or ELSEIF then it
must be present on the IF statement.

The example has two nested and one named IF block. Nesting can be to any depth (unless the compiler
prohibits this, even if it does the limit will almost certainly be con�gurable).

Even though construct names are only valid within the block that they apply to, their scope is the
whole program unit. This means that a name may only be used once in a scoping unit even though
no confusion would arise if it were re-used. (See Section 17.8 for a discussion of scope.)

Question 7: The `Triangle Program'

Write a program to accept three (INTEGER) lengths and report back on whether these lengths

Fortran 90 Course Notes File: CourseNotes.ps

62 11. Control Flow

could de�ne an equilateral, isosoles or scalene triangle (3, 2 or 0 equal length sides) or whether they
cannot form a triangle.

Demonstrate that the program works by classifying the following:

1. (1, 1, 1)

2. (2, 2, 1)

3. (1, 1, 0)

4. (3, 4, 5)

5. (3, 2, 1)

6. (1, 2, 4)

[Hint: If three lengths form a triangle then 2 times the longest side must be less than the sum of all
three sides. In Fortran 90 terms, the following must be true:

(2*MAX(side1,side2,side3) < side1+side2+side3)

]

11.4 Conditional Exit Loops

A loop comprises a block of statements that are executed cyclically. When the end of the loop is
reached, the block is repeated from the start of the loop. Loops are di�erentiated by the way they are
terminated. Obviously it would not be reasonable to continue cycling a loop forever. There must be
some mechanism for a program to exit from a loop and carry on with the instructions following the
End-of-loop.

The block of statements making up the loop is delimited by DO and END DO statements. This block is
executed as many times as is required. Each time through the loop, the condition is evaluated and the
�rst time it is true the EXIT is performed and processing continues from the statement following the
next END DO. Consider,

i = 0

DO

i = i + 1

IF (i .GT. 100) EXIT

PRINT*, "I is", i

END DO

! if i>100 control jumps here

PRINT*, "Loop finished. I now equals", i

this will generate

I is 1

I is 2

September 2, 1997 University of Liverpool

11.5. Conditional Cycle Loops 63

I is 3

....

I is 100

Loop finished. I now equals 101

This type of conditional-exit loop is useful for dealing with situations when we want input data to
control the number of times the loop is executed.

The statements between the DO and its corresponding END DO must constitute a proper block. The
statements may be labelled but no transfer of control to such a statement is permitted from outside
the loop-block. The loop-block may contain other block constructs, for example, DO, IF or CASE, but
they must be contained completely; that is they must be properly nested.

An EXIT statement which is not within a loop is an error.

11.5 Conditional Cycle Loops

Situations often arise in practice when, for some exceptional reason, it is desirable to terminate a
particular pass through a loop and continue immediately with the next repetition or cycle; this can be
achieved in Fortran 90 by arranging that a CYCLE statement is executed at an appropriate point in the
loop.

For example,

i = 0

DO

i = i + 1

IF (i >= 50 .AND. i <= 59) CYCLE

IF (i > 100) EXIT

PRINT*, "I is", i

END DO

PRINT*, "Loop finished. I now equals", i

this will generate

I is 1

I is 2

....

I is 49

I is 60

....

I is 100

Loop finished. I now equals 101

Here CYCLE forces control to the innermost DO statement (the one that contains the CYCLE statement)
and the loop begins a new iteration.

In the example, the statement:

IF (i >= 50 .AND. i <= 59) CYCLE

Fortran 90 Course Notes File: CourseNotes.ps

64 11. Control Flow

if executed, will transfer control to the DO statement. The loop must still contain an EXIT statement
in order that it can terminate.

A CYCLE statement which is not within a loop is an error.

11.6 Named and Nested Loops

Sometimes it is necessary to jump out of more than the innermost DO loop. To allow this, loops can
be given names and then the EXIT statement can be made to refer to a particular loop. An analogous
situation also exists for CYCLE,

0| outa: DO

1| inna: DO

2| ...

3| IF (a.GT.b) EXIT outa ! jump to line 9

4| IF (a.EQ.b) CYCLE outa ! jump to line 0

5| IF (c.GT.d) EXIT inna ! jump to line 8

6| IF (c.EQ.a) CYCLE ! jump to line 1

7| END DO inna

8| END DO outa

9| ...

The (optional) name following the EXIT or CYCLE highlights which loop the statement refers to.

For example,

IF (a.EQ.b) CYCLE outa

causes a jump to the �rst DO loop named outa (line 0).

Likewise,

IF (c.GT.d) EXIT inna

jumps to line 9.

If the name is missing then the directive is applied, as usual, to the next outermost loop so

IF (c.EQ.a) CYCLE

causes control to jump to line 1.

The scope of a loop name is the same as that of any construct name.

Question 8: Mathematical Magic

If you take a positive integer, halve it if it is even or triple it and add one if it is odd, and re-
peat, then the number will eventually become one.

September 2, 1997 University of Liverpool

11.7. DO ... WHILE Loops 65

Set up a loop containing a statement to read in a number (input terminated by zero) and to print
out the sequence obtained from each input. The number 13 is considered to be very unlucky and if it
is obtained as part of the sequence then execution should immediately terminate with an appropriate
message.

Demonstrate that your program works by outputting the sequences generated by the following sets of
numbers:

1. 7

2. 106, 46, 3, 0

11.7 DO ... WHILE Loops

If a condition is to be tested at the top of a loop a DO ... WHILE loop could be used,

DO WHILE (a .EQ. b)

...

END DO

The loop only executes if the logical expression evaluates to .TRUE.. Clearly, here, the values of a or
b must be modi�ed within the loop otherwise it will never terminate.

The above loop is functionally equivalent to,

DO; IF (a .NE. b) EXIT

...

END DO

EXIT and CYCLE can still be used in a DO WHILE loop, just as there could be multiple EXIT and CYCLE

statements in a regular loop.

11.8 Indexed DO Loop

Loops can be written which cycle a �xed number of times. For example,

DO i = 1, 100, 1

...

END DO

is a DO loop that will execute 100 times; it is exactly equivalent to

DO i = 1, 100

...

END DO

The syntax is as follows,

Fortran 90 Course Notes File: CourseNotes.ps

66 11. Control Flow

DO <DO-var>=< expr1>,< expr2> [,< expr3>]
< exec-stmts>

END DO

The loop can be named and the < exec-stmts> could contain EXIT or CYCLE statements, however, a
WHILE clause cannot be used but this can be simulated with an EXIT statement if desired.

The number of iterations, which is evaluated before execution of the loop begins, is calculated as

MAX(INT((<expr2>-< expr1>+< expr3>)/< expr3>),0)

in other words the loop runs from < expr1> to < expr2> in steps of < expr3>. If this gives a zero or
negative count then the loop is not executed. (It seems to be a common misconception that Fortran
loops always have to be executed once | this came from Fortran 66 and is now totally incorrect.
Zero executed loops are useful for programming degenerate cases.)

If < expr3> is absent it is assumed to be 1.

The iteration count is worked out as follows (adapted from the standard, [1]):

1. < expr1> is calculated,

2. < expr2> is calculated,

3. < expr3>, if present, is calculated,

4. the DO variable is assigned the value of < expr1>,

5. the iteration count is established (using the formula given above).

The execution cycle is performed as follows (adapted from the standard):

1. the iteration count is tested and if it is zero then the loop terminates.

2. if it is non zero the loop is executed.

3. (conceptually) at the END DO the iteration count is decreased by one and the DO variable is

incremented by < expr3>. (Note how the DO variable can be greater than < expr2>.)

4. control passes to the top of the loop again and the cycle begins again.

More complex examples may involve expressions and loops running from high to low:

DO i1 = 24, k*j, -1

DO i2 = k, k*j, j/k

...

END DO

END DO

An indexed loop could be achieved using an induction variable and EXIT statement, however, the
indexed DO loop is better suited as there is less scope for error.

The DO variable cannot be assigned to within the loop.

September 2, 1997 University of Liverpool

11.8. Indexed DO Loop 67

11.8.1 Examples of Loop Counts

There now follows a few examples of di�erent loops,

1. upper bound not exact,

loopy: DO i = 1, 30, 2

... ! 15 iterations

END DO loopy

According to the rules (given earlier) the fact that the upper bound is not exact is not relevant.
The iteration count is INT(29/2) = 14, so i will take the values 1,3,..,27,29 and �nally 31
although the loop is not executed when i holds this value, this is its �nal value.

2. negative stride,

DO j = 30, 1, -2

... ! 15 iterations

END DO

similar to above except the loop runs the other way (high to low). j will begin with the value
30 and will end up being equal to 0.

3. a zero-trip loop,

DO k = 30, 1, 2

... ! 0 iterations

... ! loop skipped

END DO

This is a false example in the sense that the loop bounds are literals and there would be no point
in coding a loop of this fashion as it would never ever be executed! The execution is as follows,
�rstly, k is set to 30 and then the iteration count would be evaluated and set to 0. This would
mean that the loop is skipped, the only consequence of its existence being that k holds the value
30.

4. missing stride | assume it is 1,

DO l = 1,30

... ! i = 1,2,3,...,30

... ! 30 iterations

END DO

As the stride is missing it must take its default value which is 1. This loop runs from 1 to (30
so the implied stride means that the loop is executed 30 times.

5. missing stride,

DO l = 30,1

... ! zero-trip

END DO

As the stride is missing it must take its default value which is 1. This loop runs from high to low
(30 to 1) so the implied stride means that the loop is not executed. The �nal value of l will be
30.

Fortran 90 Course Notes File: CourseNotes.ps

68 11. Control Flow

11.9 Scope of DO Variables

Fortran 90 is not block structured; all DO variables are visible after the loop and have a speci�c value.
The index variable is recalculated at the top of the loop and then compared with <expr2>, if the loop
has �nished, execution jumps to the statement after the corresponding END DO. The loop is executed
three times and i is assigned to 4 times, the index variable will retain the value that it had just been
assigned. For example,

DO i = 4, 45, 17

PRINT*, "I in loop = ",i

END DO

PRINT*, "I after loop = ",i

will produce

I in loop = 4

I in loop = 21

I in loop = 38

I after loop = 55

Elsewhere in the program, the index variable may be used freely but in the loop it can only be referenced
and must not have its value changed.

11.10 SELECT CASE Construct

The SELECT CASE Construct is similar to an IF construct. It is a useful control construct if one of
several paths through an algorithm must be chosen based on the value of a particular expression.

SELECT CASE (i)

CASE (3,5,7)

PRINT*,"i is prime"

CASE (10:)

PRINT*,"i is > 10"

CASE DEFAULT

PRINT*, "i is not prime and is < 10"

END SELECT

The �rst branch is executed if i is equal to 3, 5 or 7, the second if i is greater than or equal to 10

and the third branch if neither of the previous has already been executed.

A slightly more complex example with the corresponding IF structure given as a comment,

SELECT CASE (num)

CASE (6,9,99,66)

! IF(num==6.OR. .. .OR.num==66) THEN

PRINT*, "Woof woof"

CASE (10:65,67:98)

September 2, 1997 University of Liverpool

11.10. SELECT CASE Construct 69

! ELSEIF((num.GE.10.AND.num.LE.65) .OR. ...

PRINT*, "Bow wow"

CASE (100:)

! ELSEIF (num.GE.100) THEN

PRINT*, "Bark"

CASE DEFAULT

! ELSE

PRINT*, "Meow"

END SELECT

! ENDIF

Important points are,

2 the < case-expr> in this case is num.

2 the �rst < case-selector>, (6,9,99,66) means \if num is equal to either 6, 9, 66 or 99 then",

2 the second < case-selector>, (10:65,67:98) means \if num is between 10 and 65 (inclusive)
or 67 and 98 (inclusive) then",

2 (100:) speci�es the range of greater than or equal to one hundred.

2 if a case branch has been executed then when the next < case-selector> is encountered control
jumps to the END SELECT statement.

2 if a particular case expression is not satis�ed then the next one is tested.

(An IF .. ENDIF construct could be used but a SELECT CASE is neater and more e�cient.)

SELECT CASE is more e�cient than ELSEIF because there is only one expression that controls the
branching. The expression needs to be evaluated once and then control is transferred to whichever
branch corresponds to the expressions value. An IF .. ELSEIF ... has the potential to have a di�erent
expression to evaluate at each branch point making it less e�cient.

Consider the SELECT CASE construct,

SELECT CASE (I)

CASE(1); Print*, "I==1"

CASE(2:9); Print*, "I>=2 and I<=9"

CASE(10); Print*, "I>=10"

CASE DEFAULT; Print*, "I<=0"

END SELECT CASE

this maps onto the following control ow structure,

Fortran 90 Course Notes File: CourseNotes.ps

70 11. Control Flow

PRINT*,

"I>=2 and I<=9"
PRINT*, "I==1" PRINT*, "I>=10" PRINT*, "I<=0"

SELECT CASE (I)

END SELECT CASE

CASE(2:9)CASE(1) CASE(10:) CASE DEFAULT

Figure 5: Visualisation of a SELECT CASE Construct

The syntax is as follows,

[< name>:] SELECT CASE < case-expr>
[CASE < case-selector> [< name>]

< exec-stmts>] ...
[CASE DEFAULT [< name>]

< exec-stmts>]
END SELECT [< name>]

Note,

2 the < case-expr> must be scalar and INTEGER, LOGICAL or CHARACTER valued;

2 there may be any number of general CASE statements but only one CASE DEFAULT branch;

2 the < case-selector> must be a parenthesised single value or a range (section with a stride of
one), for example, (.TRUE.) or (99:101). A range speci�er is a lower and upper limit separated
by a single colon. One or other of the bounds is optional giving an open ended range speci�er.

2 the < case-expr> is evaluated and compared with the < case-selector>s in turn to see which
branch to take.

2 if no branches are chosen then the CASE DEFAULT is executed (if present).

2 when the < exec-stmts> in the selected branch have been executed, control jumps out of the
CASE construct (via the END SELECT statement).

2 as with other similar structures it is not possible to jump into a CASE construct.

CASE constructs may be named | if the header is named then so must be the END SELECT statement.
If any of the CASE branches are named then so must be the SELECT statement and the END statement

A more complex example is given below, this also demonstrates how SELECT CASE constructs may be
named.

September 2, 1997 University of Liverpool

71

...

outa: SELECT CASE (n)

CASE (:-1) outa

M = -1

CASE (1:) outa

DO i = 1, n

inna: SELECT CASE (line(i:i))

CASE ('@','&','*','$')

PRINT*, "At EOL"

CASE ('a':'z','A':'Z')

PRINT*, "Alphabetic"

CASE DEFAULT

PRINT*, "CHAR OK"

END SELECT inna

END DO

CASE DEFAULT outa

PRINT*, "N is zero"

END SELECT outa

Analysis:

2 the �rst SELECT CASE statement is named outa and so is the corresponding END SELECT state-
ment.

2 the < case-expr> in this case is n this is evaluated �rst and its value stored somewhere.

2 the �rst < case-selector>, (:-1) means \if n is less than or equal to -1" so if this is true then
this branch is executed | when the next < case-selector> is encountered, control jumps to the
END SELECT statement.

2 if the above case expression is not satis�ed then the next one is tested. (1:) speci�es the range
of greater than or equal to one. If n satis�es this then the DO loop containing the nested CASE

construct is entered. If it does not then the DEFAULT action is carried out. In this case this
branch corresponds to the value 0, the only value not covered by the other branches.

2 the inner case structure demonstrates a scalar CHARACTER < case-expr> which is matched to a
list of possible values or, indeed, a list of possible ranges. If the character substring line(i:i)

matches a value from either the list or list of ranges then the appropriate branch is executed. If
it is not matched then the DEFAULT branch is executed. Note a CHARACTER substring cannot
be written as line(i)

2 this inner case structure is executed n times, (as speci�ed by the loop,) and then control passes
back to the outer case structure. Since the executable statements of the case branch have now
been completed, the construct is exited.

12 Mixing Objects of Di�erent Types

12.1 Mixed Numeric Type Expressions

When an (sub)expression is evaluated, the actual calculation in the CPU must be between operands of
the same type, this means if the expression is of mixed type, the compiler must automatically convert
(promote or coerce) one type to another. Default types have an implied ordering

Fortran 90 Course Notes File: CourseNotes.ps

72 12. Mixing Objects of Di�erent Types

1. INTEGER | lowest

2. REAL

3. DOUBLE PRECISION

4. COMPLEX | highest

thus if an INTEGER is mixed with a REAL the INTEGER is promoted to a REAL and then the calculation
performed; the resultant expression is of type REAL.

For example,

2 INTEGER * REAL gives a REAL, (3*2.0 is 6.0)

2 REAL * INTEGER gives a REAL, (3.0*2 is 6.0)

2 DOUBLE PRECISION * REAL gives DOUBLE PRECISION,

2 COMPLEX * < anytype> gives COMPLEX,

2 DOUBLE PRECISION * REAL * INTEGER gives DOUBLE PRECISION.

Consider the expression,

int*real*dp*c

the types are coerced as follows:

1. int to REAL

2. int*real to DOUBLE PRECISION

3. (int*real)*dp to COMPLEX.

The above expression is therefore COMPLEX valued.

Note that numeric and non-numeric types cannot be mixed using intrinsic operators, nor can LOGICAL

and CHARACTER.

In general one must think hard and long about mixed mode arithmetic!

12.2 Mixed Type Assignment

When the RHS expression of a mixed type assignment statement has been evaluated it has a speci�c
type, this type must then be converted to �t in with the LHS. This conversion could be either a
promotion or a relegation. For example,

2 INTEGER = REAL (or DOUBLE PRECISION)

The RHS needs relegating to be an INTEGER value. The right hand side is evaluated and then
the value is truncated (all the decimal places lopped o�) then assigned to the LHS.

September 2, 1997 University of Liverpool

12.3. Integer Division 73

2 REAL (or DOUBLE PRECISION) = INTEGER

The INTEGER needs promoting to become a REAL. The right hand side expression is simply stored
(approximately) in the LHS.

For example, as real values are stored approximately,

REAL :: a = 1.1, b = 0.1

INTEGER :: i, j, k

i = 3.9 ! i will be 3

j = -0.9 ! j will be 0

k = a - b ! k will be 1 or 0

Notes:

2 since i is INTEGER, the value 3.9 must be truncated, integers are always formed by truncating
towards zero.

2 j (an INTEGER,) would be truncated to 0.

2 the result of a - b would be close to 1.0 (it could be 1.0000001 or it could be 0.999999999),
so, because of truncation, k could contain either 0 or 1.

Care must be taken when mixing types!

12.3 Integer Division

If one integer divides another in a subexpression then the type of that subexpression is INTEGER.
Confusion often arises about integer division; in short, division of two integers produces an integer
result by truncation (towards zero).

Consider,

REAL :: a, b, c, d, e

a = 1999/1000

b = -1999/1000

c = (1999+1)/1000

d = 1999.0/1000

e = 1999/1000.0

2 a is (about) 1.000. The integer expression 1999/1000 is evaluated and then truncated towards
zero to produce an integral value, 1. Its says in the Fortran 90 standard, [1], P84 section 7.2.1.1,
\The result of such an operation [integer division] is the integer closest to the mathematical
quotient and between zero and the mathematical quotient inclusively."

2 b is (about) -1.000 for the same reasons as above.

2 c is (about) 2.000 because, due to the parentheses 2000/1000 is calculated.

2 d and e are (about) 1.999 because both RHS's are evaluated to be real numbers, in 1999.0/1000
and 1999/1000.0 the integers are promoted to real numbers before the division.

Fortran 90 Course Notes File: CourseNotes.ps

74 13. Intrinsic Procedures

Question 9: Decimal to Roman Numerals Conversion

Using a SELECT CASE block and integer division write a program that reads in a decimal num-
ber between 0 and 999 and prints out the equivalent in Roman Numerals.

Demonstrate that your program works with the numbers:

1. 888

2. 0

3. 222

4. 536

The output should contain no embedded spaces.

0
1 i 1� x 1�� c

2 ii 2� xx 2�� cc

3 iii 3� xxx 3�� ccc

4 iv 4� xl 4�� cd

5 v 5� l 5�� d

6 vi 6� lx 6�� dc

7 vii 7� lxx 7�� dcc

8 viii 8� lxxx 8�� dccc

9 ix 9� xc 9�� cm

Hint: Use a CHARACTER string (or CHARACTER strings) to store the number before output. The `longest'
number is 888, dccclxxxviii (12 characters).

13 Intrinsic Procedures

Some tasks in a language are performed frequently, Fortran 90 has e�cient implementations of such
common tasks built-in to the language, these procedures are called intrinsic procedures. Fortran 90
has 113 intrinsic procedures in a number of di�erent classes,

2 elemental such as:

� mathematical, such as, trigonometric and logarithms, for example, SIN or LOG.

� numeric, for example, SUM or CEILING.

� character, for example, INDEX and TRIM.

� bit manipulation, for example, IAND and IOR. (There is no BIT data type but intrinsics exist
for manipulating integers as if they were bit variables.)

Elemental procedures apply to scalar objects as well as arrays | when an array argument is
supplied the same function is applied to each element of the array at (conceptually) the same
time.

2 inquiry, for example, ALLOCATED and SIZE; These report on the status of a program. We can
inquire about:

September 2, 1997 University of Liverpool

13.1. Type Conversion Functions 75

� the status of dynamic objects.

� array bounds, shape and size.

� kind parameters of an object and available kind representations, (useful for portable code).

� the numerical model; used to represent types and kinds.

� argument presence (for use with OPTIONAL dummy arguments).

2 transformational, for example, REAL and TRANSPOSE. The functionality includes:

� repeat (for characters | repeats strings).

� mathematical reduction procedures, i.e., given an array return an object of less rank.

� array manipulation | shift operations, RESHAPE, PACK.

� type coercion, TRANSFER copies bit-for-bit to an object of a di�erent type. (Stops people
doing dirty tricks like changing the type of an object across a procedure boundary which
was a popular Fortran 77 `trick'.)

� PRODUCT and DOT PRODUCT (arrays).

2 miscellaneous (non-elemental SUBROUTINEs) including timing routines, for example, SYSTEM -

CLOCK and DATE AND TIME.

The procedures vary in what arguments are permitted. Some procedures can be applied to scalars and
arrays, some to only scalars and some to only arrays. All intrinsics which take REAL valued arguments
also accept DOUBLE PRECISION arguments.

13.1 Type Conversion Functions

In Fortran 90 it is easy to explicitly transform the type of a constant or variable by using the in-built
intrinsic functions.

2 REAL(i) converts the integer i to the corresponding real approximation, the argument to REAL

can be INTEGER, DOUBLE PRECISION or COMPLEX.

2 INT(x) converts real x to the integer equivalent following the truncation rules given before. The
argument to INT can be REAL, DOUBLE PRECISION or COMPLEX.

2 Other functions may form integers from non-integer values:

� CEILING(x) | smallest integer greater or equal to x,

� FLOOR(x) | largest integer less or equal to x,

� NINT(x) | nearest integer to x.

2 DBLE(a) converts a to DOUBLE PRECISION, the argument to DBLE can be INTEGER, REAL or
COMPLEX.

2 CMPLX(x) or CMPLX(x,y) | converts x to a complex value, x+ iy.

2 IACHAR(c) returns the position of the CHARACTER variable c in the ASCII collating sequence,
the argument must be a single CHARACTER.

2 ACHAR(i) returns the ith character in the ASCII collating sequence (see 33), the argument ACHAR
must be a single INTEGER.

Fortran 90 Course Notes File: CourseNotes.ps

76 13. Intrinsic Procedures

For example,

PRINT*, REAL(1), INT(1.7), INT(-0.9999)

PRINT*, IACHAR('C'), ACHAR(67)

would give

1.000000 1 0

67 C

13.2 Mathematical Intrinsic Functions

Summary,

ACOS(x) arccosine
ASIN(x) arcsine
ATAN(x) arctangent
ATAN2(y,x) arctangent of complex number (x; y)
COS(x) cosine where x is in radians
COSH(x) hyperbolic cosine where x is in radians
EXP(x) e raised to the power x
LOG(x) natural logarithm of x
LOG10(x) logarithm base 10 of x
SIN(x) sine where x is in radians
SINH(x) hyperbolic sine where x is in radians
SQRT(x) the square root of x
TAN(x) tangent where x is in radians
TANH(x) tangent where x is in radians

2 ASIN, ACOS | arcsin and arccos.

The argument to each must be real and � j1j, for example, ASIN(0.84147098) has value 1.0
(radians).

2 ATAN | arctan.

The argument must be real valued, for example, ATAN(1.0) is �
4
, ATAN(1.5574077) has value

1.0.

2 ATAN2 | arctan; the principle value of the nonzero complex number (X,Y), for example,
ATAN2(1.5574077,1.0) has value 1.0.

The two arguments (Y, X) (note order) must be real valued, if Y is zero then X cannot be.
These numbers represent the complex value (X,Y).

2 TAN, COS, SIN | tangent, cosine and sine.

Their arguments must be real or complex and aremeasured in radians, for example, COS(1.0)
is 0.5403.

2 TANH, COSH, SINH | hyperbolic trigonometric functions.

The actual arguments must be REAL valued, for example, COSH(1.0) is 1.54308.

September 2, 1997 University of Liverpool

13.3. Numeric Intrinsic Functions 77

2 EXP, LOG, LOG10, SQRT | ex, natural logarithm, logarithm base 10 and square root.

The arguments must must be real or complex (with certain constraints), for example, EXP(1.0)
is 2.7182.

Note that SQRT(9) is an invalid expression because the argument to SQRT cannot be INTEGER.

All angles are expressed in radians.

Question 10: Point on a circle

Write a program to read in a vector de�ned by a length, r and an angle, �, in degrees which
prints out the corresponding (x;y) co-ordinates. Recall that arguments to trigonometric functions are
in radians.

Demonstrate correctness by giving the (x;y) co-ordinates for the following vectors

1. r = 12, � = 77�

2. r = 1000, � = 0�

3. r = 1000, � = 90�

4. r = 20, � = 100�

5. r = 12, � = 437�

θ

r

(x,y)

Hint: remember that

sin � =
y

r

and

cos � =
x

r

13.3 Numeric Intrinsic Functions

Summary,

Fortran 90 Course Notes File: CourseNotes.ps

78 13. Intrinsic Procedures

ABS(a) absolute value
AINT(a) truncates a to whole REAL number
ANINT(a) nearest whole REAL number
CEILING(a) smallest INTEGER greater than or equal to REAL number
CMPLX(x,y) convert to COMPLEX

DBLE(x) convert to DOUBLE PRECISION

DIM(x,y) positive di�erence
FLOOR(a) biggest INTEGER less than or equal to real number
INT(a) truncates a into an INTEGER

MAX(a1,a2,a3,...) the maximum value of the arguments
MIN(a1,a2,a3,...) the minimum value of the arguments
MOD(a,p) remainder function
MODULO(a,p) modulo function
NINT(x) nearest INTEGER to a REAL number
REAL(a) converts to the equivalent REAL value
SIGN(a,b) transfer of sign | ABS(a)*(b/ABS(b))

As all are elemental they can accept array arguments, the result is the same shape as the argument(s)
and is the same as if the intrinsic had been called separately for each array element of the argument.

2 ABS | absolute value.

The argument can be INTEGER, REAL or COMPLEX, the result is of the same type as the argument
except for complex where the result is real valued, for example, ABS(-1) is 1, ABS(-.2) is 0.2
and ABS(CMPLX(-3.0,4.0)) is 5.0.

2 AINT | truncates to a whole number.

The argument and result are real valued, for example, AINT(1.7) is 1.0 and AINT(-1.7) is
-1.0.

2 ANINT | nearest whole number.

The argument and result are real valued, for example, AINT(1.7) is 2.0 and AINT(-1.7) is
-2.0.

2 CEILING, FLOOR | smallest INTEGER greater than (or equal to), or biggest INTEGER less than
(or equal to) the argument.

The argument must be REAL, for example, CEILING(1.7) is 2 CEILING(-1.7) is 1.

2 CMPLX | converts to complex value.

The argument must be two real numbers, for example, CMPLX(3.6,4.5) is a complex number.

2 DBLE | coerce to DOUBLE PRECISION data type.

Arguments must be REAL, INTEGER or COMPLEX. The result is the actual argument converted to
a DOUBLE PRECISION number.

2 DIM | positive di�erence.

Arguments must be REAL or INTEGER. If X bigger than Y then DIM(X,Y) = X-Y, if Y > X and
result of X-Y is negative then DIM(X,Y) is zero, for example, DIM(2,7) is 0 and DIM(7,2) is 5.

2 INT truncates to an INTEGER (as in integer division)

Actual argument must be numeric, for example INT(8.6) is 8 and INTCMPLX(2.6,4.0) is 2.

2 MAX and MIN | maximum and minimum functions.

These must have at least two arguments which must be INTEGER or REAL. MAX(1.0,2.0) is
2.0.

September 2, 1997 University of Liverpool

13.3. Numeric Intrinsic Functions 79

2 MOD | remainder function.

Arguments must be REAL or INTEGER. MOD(a,p) is the remainder when evaluating a/p, for
example, MOD(9,5) is 4, MOD(-9.0,5.0) is -4.0.

2 MODULO | modulo function.

Arguments must be REAL or INTEGER. MODULO(a,b) is amodb, for example, MOD(9,5) is 4,
MOD(-9.0,5.0) is 1.0.

2 REAL | coverts to REAL value.

For example, REAL(5) is 5.0

2 SIGN | transfers the sign of the second argument to the �rst.

The arguments are real or integer and the result is of the same type and is equal to ABS(a)*(b/
ABS(b)), for example, SIGN(6,-7) is -6, SIGN(-6,7) is 6.

Question 11: Quadratic equation solver

Write a program to read in values of a, b and c and calculate the real roots of the correspond-
ing quadratic equation:

y = a2x+ bx+ c

Point out if the equation only has one or no real roots.

The program should repeatedly expect input; a = 0, b = 0 and c = 0 should be used to terminate.

Hint 1: recall that the solution of a general quadratic equation equation is:

x =
�b�p

b2 � 4ac

2a

Hint 2: The program has a single root if

b2 � 4ac = 0

two real roots if

b2 � 4ac > 0

and imaginary roots if

b2 � 4ac < 0

Fortran 90 Course Notes File: CourseNotes.ps

80 13. Intrinsic Procedures

13.4 Character Intrinsic Functions

Summary,

ACHAR(i) ith character in ASCII collating sequence
ADJUSTL(str) adjust left
ADJUSTR(str) adjust right
CHAR(i) ith character in processor collating sequence
IACHAR(ch) position of character in ASCII collating sequence
ICHAR(ch) position of character in processor collating sequence
INDEX(str,substr) starting position of substring
LEN(str) Length of string
LEN TRIM(str) Length of string without trailing blanks
LGE(str1,str2) lexically .GE.
LGT(str1,str2) lexically .GT.
LLE(str1,str2) lexically .LE.
LLT(str1,str2) lexically .LT.
REPEAT(str,i) repeat i times
SCAN(str,set) scan a string for characters in a set
TRIM(str) remove trailing blanks
VERIFY(str,set) verify the set of characters in a string

2 ACHAR| ith character in ASCII collating sequence.

The argument must be between 0 and 127; this function is the inverse of IACHAR, for example
ACHAR(100) is 'd'. Compare to CHAR.

2 ADJUSTL | adjust a string left.

The argument must be a string and the result is the same string with leading blanks removed
and inserted as trailing blanks.

2 ADJUSTR | adjust a string right.

The argument must be a string and the result is the same string with trailing blanks removed
and inserted as leading blanks.

2 CHAR | ith character in the compilers collating sequence

Takes a single character as an argument. The result is similar to ACHAR but uses the compilers
collating sequence (this will often be the same as ACHAR.)

2 IACHAR | position of a character in ASCII collating sequence.

Takes a single character as an argument which must be an ASCII character, and returns its
position of a character in ASCII collating sequence, for example, IACHAR('d') is 100.

2 ICHAR | position of a character in the compilers collating sequence.

Takes a single character as an argument (which must be valid) and returns its position of a
character in the compilers collating sequence, for example, IACHAR('d') is 100. (The result is
often the same as IACHAR.)

2 INDEX | starting position of a substring in a string.

Takes two arguments, both must be of type CHARACTER and of the same kind, the result is the
�rst occurrence of substr in str, for example, INDEX('jibberish','eris') is 5.

September 2, 1997 University of Liverpool

81

2 LEN, LEN TRIM| length of string

Both take one string argument the �rst function returns the length of the string including the
trailing blanks and the second discounts the blanks, for example, LEN("Whoosh!! ") is 10,
LEN TRIM("Whoosh!! ") is 8.

2 LGE, .., LLT | lexical positional operators.

These functions accept two strings of the same kind, the result is comparable to that of relational
operators in the sense that a LOGICAL value is returned governed by the lexical position of
the string in ASCII order. This means there is a di�erence between the case of a letter, for
example, LGT('Tin','Tin') returns .FALSE., LGE('Tin','Tin') and LGE('tin','Tin')

return .TRUE..

2 REPEAT | concatenate string i times.

The �rst argument is a string and the second the number of times it is to be repeated, for
example REPEAT('Boutrous ',2) is 'Boutrous Boutrous '.

2 TRIM | remove trailing blanks.

2 VERIFY | verify that a set of characters contains all the letters in a string.

The two arguments, set and string, are characters and of the same kind. Given a set of
characters (stored in a string) the result is the �rst position in the string which is a character
that is NOT in the set, for example, VERIFY('ABBA','A') is 2 and VERIFY('ABBA','BA') is
0.

Question 12: Concatenate Names

Write a program which accepts two names (Christian name and Family name, a maximum of 10
characters each) and outputs a single string containing the full name separated by one space with the
�rst letter of each name in upper case and the rest of the name in lower case. You may assume that
all inputs are valid names.

Hint a comes before A in the ASCII collating sequence.

(This sequence is given in the notes.)

14 Simple Input / Output

14.1 PRINT Statement

This is the simplest form of directing unformatted data to the standard output channel, for example,

PROGRAM Outie

CHARACTER(LEN=*), PARAMETER :: long_name = &

"Llanfairphwyll...gogogoch"

REAL :: x, y, z

LOGICAL :: lacigol

x = 1; y = 2; z = 3

lacigol = (y .eq. x)

PRINT*, long_name

PRINT*, "Spock says ""illogical&

Fortran 90 Course Notes File: CourseNotes.ps

82 14. Simple Input / Output

&Captain"" "

PRINT*, "X = ",x," Y = ",y," Z = ",z

PRINT*, "Logical val: ",lacigol

END PROGRAM Outie

produces on the screen,

Llanfairphwyll...gogogoch

Spock says "illogical Captain"

X = 1.000 Y = 2.000 Z = 3.000

Logical val: F

As can be seen from the above example, the PRINT statement takes a comma separated list of things
to print, the list can be any printable object including user-de�ned types (as long as they don't contain
pointers). The * indicates the output is in free (default) format. Fortran 90 supports a great wealth
of output (and input) formatting which is not all described here!

There are a couple of points to raise,

2 LOGICAL variables can be printed,

lacigol = (y .eq. x)

generates an F signifying .FALSE..

2 Strings can be split across lines,

PRINT*, "Spock says ""illogical&

&Captain"" "

If a CHARACTER string crosses a line indentation can still be used if an & is appended to the end
of the �rst line and the position from where the string is wanted to begin on the second - see
the Spock line in the example; the &s act like a single space.

2 The double " in the string, the �rst one escapes the second. Strings may be delimited by the
double or single quote symbols, " and ', but these may not be mixed in order to delimit a string.
The following would produce the same output as the statement in the program,

PRINT*, 'Spock says "illogical&

&Captain" '

In this case the " delimiter does not have to be escaped.

2 Notice how the output has many more spaces than the PRINT statement indicates. This is because
output is unformatted. The default formatting is likely to be di�erent between compilers.

2 Each PRINT statement begins a new line, non-advancing I/O is available but we have to specify
it in a FORMAT statement.

September 2, 1997 University of Liverpool

14.2. READ Statement 83

14.2 READ Statement

This is the simplest form of reading unformatted data from the standard input channel, for example,
if the type declarations are the same as for the PRINT example,

READ*, long_name

READ*, x, y, z

READ*, lacigol

would read the following input from the keyboard

Llanphairphwyll...gogogoch

0.4 5. 1.0e12

T

Note,

2 each READ statement reads from a newline;

2 the READ statement can transfer any object of intrinsic type from the standard input;

The * format speci�er in the READ statement is comparable to the functionality of PRINT, in other
words, unformatted data is read. (Actually this is not strictly true formatted data can be read but the
format cannot be speci�ed!) As long as each entity to be read in is blank separated, then the READ

statement simply works through its `argument' list. Each READ statement begins a new line so if there
are less arguments to the read statement than there are entries on a line the extra items will be ignored.

Fortran 90 Course Notes File: CourseNotes.ps

Module 5:
Arrays

15 Arrays

Arrays (or matrices) hold a collection of di�erent values at the same time. Individual elements are
accessed by subscripting the array.

A 15 element array can be visualised as:

1 2 15143 13

Figure 6: A One Dimensional (1D) Array

And a 5 � 3 array as:

1,1

2,1

3,1

5,1

1,2 1,3

3,2

5,2

3,3

2,32,2

5,3

4,34,24,1

Dimension 2

D
im

en
si

on
 1

Figure 7: A Two Dimensional (2D) Array

Every array has a type (REAL, INTEGER, etc) so each element holds a value of that type.

84

15.1. Array Terminology 85

15.1 Array Terminology

Examples of declarations:

REAL, DIMENSION(15) :: X

REAL, DIMENSION(1:5,1:3) :: Y, Z

The above are explicit-shape arrays.

If the lower bound is not explicitly stated it is taken to be 1.

Terminology:

2 rank | the number of dimensions up to and including 7 dimensions. X has rank 1, Y and Z have
rank 2.

2 bounds | upper and lower limits of indices, an unspeci�ed bound is 1. X has lower bound 1 and
upper bound 15, Y and Z have lower bounds of 1 and 1 with upper bounds 5 and 3.

2 extent | number of elements in dimension (which can be zero). X has extent 15, Y and Z have
extents 5 and 3.

2 size | either the total number of elements or, if particular dimension is speci�ed, the number
of elements in that dimension. All arrays have size 15.

2 shape | rank and extents. X has shape (/15/), Y and Z have shape (/5,3/).

2 conformable| two arrays are conformable if they have the same shape | for operations between
two arrays the shapes (of the sections) must (generally) conform (just like in mathematics). Y

and Z have the same shape so they conform.

2 there is no storage association for Fortran 90 arrays.

Explicit-shape arrays can have symbolic bounds so long as they are initialisation expressions | evalu-
atable at compile time.

Question 13: Rank, Extents etc.

Give the rank, bounds, size and shape of the arrays de�ned as follows:

REAL, DIMENSION(1:10) :: ONE

REAL, DIMENSION(2,0:2) :: TWO

INTEGER, DIMENSION(-1:1,3,2) :: THREE

REAL, DIMENSION(0:1,3) :: FOUR

15.2 Declarations

As long as the value of lda is known the following are valid:

Fortran 90 Course Notes File: CourseNotes.ps

86 15. Arrays

REAL, DIMENSION(100) :: R

REAL, DIMENSION(1:10,1:10) :: S

REAL :: T(10,10)

REAL, DIMENSION(-10:-1) :: X

INTEGER, PARAMETER :: lda = 5

REAL, DIMENSION(0:lda-1) :: Y

REAL, DIMENSION(1+lda*lda,10) :: Z

The above example demonstrates:

2 bounds can begin and end anywhere, (the array X),

2 default lower bound is 1,

2 there is a shorthand form of declaration, see T,

2 arrays can be zero-sized. If lda were set to be zero,

INTEGER, PARAMETER :: lda = 0

then the array Y would be zero sized.

Zero-sized arrays are useful when programming degenerate cases especially when invoking proce-
dures (in this case we would expect lda to be a dummy argument which determines the size of
some local (or automatic) array); no extra code has to be added to test for zero extents in any
of the dimensions | statements including references to zero sized arrays are simply ignored.

Question 14: Hotel Array

Declare an array of rank 3 which might be suitable for representing a hotel with 8 oors and 16
rooms on each oor and two beds in each room. How would the second bed in the 5th room on oor
7 be referenced?

Consider the following declarations,

REAL, DIMENSION(15) :: A

REAL, DIMENSION(-4:0,0:2) :: B

REAL, DIMENSION(5,3) :: C

REAL, DIMENSION(0:4,0:2) :: D

Individual array elements are denoted by subscripting the array name by an INTEGER, for example,
A(7) 7th element of A, or C(3,2), 3 elements down, 2 across.

The arrays can be visualised as below:

The �rst dimension runs up and down the page and the second dimensions runs across the page.

Question 15: Array References

Given,

September 2, 1997 University of Liverpool

15.3. Array Conformance 87

B(-4,0)

C(1,1)

D(0,0)

B(0,0)

C(5,1)

D(4,0)

B(0,2)

C(5,3)

D(4,2)

B(-4,2)

C(1,3)

D(0,2)

A(1) A(15)

Figure 8: Visualisation of Arrays

INTEGER :: i = 3, j = 7

REAL, DIMENSION(1:20) :: A

which of the following are valid array references for the array:

2 A(12)

2 A(21)

2 A(I)

2 A(3.0)

2 A(I*J)

2 A(1+INT(4.0*ATAN(1.0)))

[Hint: 4.0*ATAN(1.0) is �]

15.3 Array Conformance

If an object or sub-object is used directly in an expression then it must conform with all other objects
in that expression. (Note that a scalar conforms to any array with the same value for every element.)
for two array references to conform both objects must be the same shape.

Using the declarations from before:

C = D ! is valid

A = B ! is not valid

Fortran 90 Course Notes File: CourseNotes.ps

88 15. Arrays

C = D Valid

Invalid

B = A

Figure 9: Visualisation of conforming Arrays

Visualisation,

A and B have the same size (15 elements) but have di�erent shapes so cannot be directly equated. To
force conformance the array must be used as an argument to a transformational intrinsic to change its
shape, for example,

B = RESHAPE(A,(/5,3/)) ! is, see later

A = PACK(B,.TRUE.) ! is, see later

A = RESHAPE(B,(/10,8/)) ! is, see later

B = PACK(A,.TRUE.) ! is, see later

Arrays can have their shapes changed by using transformational intrinsics including, MERGE, PACK,
SPREAD, UNPACK and RESHAPE.

Two arrays of di�erent types conform and if used in the same expression will have the relevant type
coercion performed just like scalars.

Question 16: Conformance

Given

REAL, DIMENSION(1:10) :: ONE

REAL, DIMENSION(2,0:2) :: TWO

INTEGER, DIMENSION(-1:1,3,2) :: THREE

REAL, DIMENSION(0:1,3) :: FOUR

Which two of the arrays are conformable?

September 2, 1997 University of Liverpool

15.4. Array Element Ordering 89

first elt

last elt

C(1,1)

C(5,1) C(5,3)

C(1,3)

Figure 10: Visualisation Of Array Element Ordering

15.4 Array Element Ordering

Fortran 90 does not have any storage association meaning that, unlike Fortran 77, the standard
does not specify how arrays are to be organised in memory. This makes passing arrays to a procedure
written in a di�erent language very di�cult indeed.

The lack of implicit storage association makes it easier to write portable programs and allows compiler
writers more freedom to implement local optimisations. For example, in distributed memory computers
an array may be stored over 100 processors with each processor owning only a small section of the
whole array | the standard will allow this.

There are certain situations where an ordering is needed, for example, during input or output and in
these circumstances Fortran 90 does de�ne ordering which can be used in such contexts. It is de�ned
in the same manner as the Fortran 77 storage association but it does not imply anything about
how array elements are stored.

The array element ordering is again of column major form:

C(1,1),C(2,1),..,C(5,1),C(1,2),C(2,2),..,C(5,3)

This ordering is used in array constructors, I/O statements, certain intrinsics (TRANSFER, RESHAPE,
PACK, UNPACK and MERGE) and any other contexts where an ordering is needed.

Question 17: Array Element Ordering

Given

REAL, DIMENSION(1:10) :: ONE

Fortran 90 Course Notes File: CourseNotes.ps

90 15. Arrays

REAL, DIMENSION(2,0:2) :: TWO

INTEGER, DIMENSION(-1:1,3,2) :: THREE

REAL, DIMENSION(0:1,3) :: FOUR

Write down the array element order of each array.

15.5 Array Syntax

Using the earlier declarations, references can be made to:

2 whole arrays (conformable)

� A = 0.0

This statement will set whole array A to zero. Each assignment is performed conceptually
at the same time. Scalars always conform with arrays.

� B = C + D

This adds the corresponding elements of C and D and then assigns each element if the result
to the corresponding element of B.

For this to be legal Fortran 90 both arrays in the RHS expression must conform (B and Cmust
be same shape and size). The assignment could have been written B(:) = C(:) + D(:)

demonstrating how a whole array can be referenced by subscripting it with a colon. (This is
shorthand for lower bound:upper bound and is exactly equivalent to using only its name
with no subscripts or parentheses.)

2 elements

� A(1) = 0.0

This statement sets one element, the �rst element of A (A(1)), to zero,

� B(0,0) = A(3) + C(5,1)

Sets element B(0,0) to the sum of two elements.

If present, array subscripts must be integer valued expressions.

A particular element of an array is accessed by subscripting the array name with an integer
which is within the bounds of the declared extent. Subscripting directly with a REAL, COMPLEX,
CHARACTER, DOUBLE PRECISION or LOGICAL is an error. This, and indeed the previous example,
demonstrates how scalars (literals and variables) conform to arrays; scalars can be used in many
contexts in place of an array.

2 array sections

� A(2:4) = 0.0

This assignment sets three elements of A (A(2), A(3) and A(4)) to zero.

� B(-1:0,1:2)=C(1:2,2:3)+1

Adds one to the subsection of C and assigns to the subsection of B.

The above examples demonstrate how parts (or subsections) of arrays can be referenced. An
array section can be speci�ed using the colon range notation �rst encountered in the SELECT

CASE construct. In addition, the sequence of elements can also have a stride (like DO loops)
meaning that the section speci�cation is denoted by a subscript-triplet which is a linear function.

Care must be taken when referring to di�erent sections of the same array on both sides of an assignment
statement, for example,

September 2, 1997 University of Liverpool

15.6. Whole Array Expressions 91

DO i = 2,15

A(i) = A(i) + A(i-1)

END DO

is not the same as

A(2:15) = A(2:15) + A(1:14)

in the �rst case, a general element i of A has the value,

A(i) = A(i) + A(i-1) + ... + A(2) + A(1)

but in the vectorised statement it has the value

A(i) = A(i) + A(i-1)

The correct vector equivalent to the original DO-loop can be achieved by using the SUM intrinsic,
A(2:15) = (/ (SUM(1:i), i=2,15) /),

In summary both scalars and arrays can be thought of as objects. (More or less) the same operations
can be performed on each with the array operations being performed in parallel. It is not possible to
have a scalar on the LHS of an assignment and a non scalar array reference on the RHS unless that
section is an argument to a reduction function.

15.6 Whole Array Expressions

A whole (or section of an) array can be treated like a single variable in that all intrinsic operators which
apply to intrinsic types have their meaning extended to apply to conformable arrays, for example,

B = C * D - B**2

as long as B, C and D conform then the above assignment is valid. (Recall that the RHS of the
** operator must be scalar.) Note that in the above example, C*D is not matrix multiplication,
MATMUL(C,D) should be used if this is the desired operation.

The above assignment is equivalent to:

!PARALLEL

B(-4,0) = C(1,1)*D(0,0)-B(-4,0)**2 ! in ||

B(-3,0) = C(2,1)*D(1,0)-B(-3,0)**2 ! in ||

...

B(-4,1) = C(1,2)*D(0,1)-B(-4,1)**2 ! in ||

...

B(0,2) = C(5,3)*D(4,2)-B(0,2)**2 ! in ||

!END PARALLEL

With array assignment there is no implied order of the individual assignments, they are performed,
conceptually, in parallel.

In addition to the above operators, the subset of intrinsic functions termed elemental can also be
applied, for example,

Fortran 90 Course Notes File: CourseNotes.ps

92 15. Arrays

B = SIN(C)+COS(D)

The functions are also applied element by element, thus the above is equivalent to the parallel execution
of,

!PARALLEL

B(-4,0) = SIN(C(1,1))+COS(D(0,0))

...

B(0,2) = SIN(C(5,3))+COS(D(4,2))

!END PARALLEL

Many of Fortran 90's intrinsics are elemental including all numeric, mathematical, bit, character and
logical intrinsics.

Again it must be stressed that conceptually there is no order implied in the array statement form
| each individual assignment can be thought of as being executed in parallel between corresponding
elements of the arrays | this is di�erent from the DO-loop.

15.7 Visualising Array Sections

Consider the declaration

REAL, DIMENSION(1:6,1:8) :: P

The sections:

2 P(1:3,1:4) is a 3� 4 section; the missing stride implies a value of 1,

2 P(2:6:2,1:7:3), which could be written: P(2::2,:7:3)) is a 3� 3 section.

(A missing upper bound (in the �rst dimension) means assume the upper bound as declared, (6),
A missing lower bound is the lower bound as declared, (1).)

2 P(2:5,7) is a 1D array with 4 elements; P(2:5,7:7) is a 4� 1 2D array,

2 P(1:6:2,1:8:2) is a 3�4 section. This could also be written as P(::2,::2), here both upper
and lower bounds are missing so the values are taken to be the bounds as declared,

Conformance:

2 P(1:3,1:4) = P(1:6:2,1:8:2) is a valid assignment; both LHS and RHS are 3� 4 sections.

2 P(1:3,1:4) = 1.0 is a valid assignment; a scalar on the RHS conforms to any array on the
LHS of an assignment.

2 P(2:6:2,1:7:3) = P(1:3,1:4) is not a valid assignment; an attempt is made to equate a
3� 3 section with a 3� 4 section, the array sections do not conform.

2 P(2:6:2,1:7:3) = P(2:5,7) is not a valid assignment; an attempt is made to equate a 3� 3
section with a 4 element 1D array.

It is important to recognise the di�erence between an n element 1D array and a 1� n 2D array:

September 2, 1997 University of Liverpool

15.7. Visualising Array Sections 93

P(1:3,1:4)

P(2:5,7) P(2:5,7:7)

P(2:6:2,1:7:3)

P(1:6:2,1:8:2)

Figure 11: Visualisation of Array Sections

Fortran 90 Course Notes File: CourseNotes.ps

94 15. Arrays

2 P(2:5,7) is a 1D section | the scalar in the second dimension `collapses' the dimension.

2 P(2:5,7:7) is a 2D section | the second dimension is speci�ed with a section (a range) not a
scalar so the resultant sub-object is still two dimensional.

15.8 Array Sections

The general form of a subscript-triplet speci�er is::

[< bound1>]:[< bound2>][:< stride>]

The section starts at < bound1> and ends at or before < bound2>. < stride> is the increment by
which the locations are selected. < bound1>, < bound2> and < stride> must all be scalar integer
expressions. Thus

A(:) ! the whole array

A(3:9) ! A(m) to A(n) in steps of 1

A(3:9:1) ! as above

A(m:n) ! A(m) to A(n)

A(m:n:k) ! A(m) to A(n) in steps of k

A(8:3:-1) ! A(8) to A(3) in steps of -1

A(8:3) ! A(8) to A(3) step 1 => Zero size

A(m:) ! from A(m) to default UPB

A(:n) ! from default LWB to A(n)

A(::2) ! from default LWB to UPB step 2

A(m:m) ! 1 element section

A(m) ! scalar element - not a section

are all valid.

If the upper bound (< bound2>) is not a combination of the lower bound plus multiples of the stride
then the actual upper bound is di�erent from that stated; this is the same principle that is applied to
DO-loops.

Another similarity with the DO-loops is that when the stride is not speci�ed it is assumed to have a
value of 1. In the above example, this means that A(3:8) is the same as A(3:8:1) but A(8:3) is a
zero sized section and A(8:3:-1) is a section that runs backwards. Zero strides are not allowed and,
in any case, are pretty meaningless!

Other bound speci�ers can be absent too, if < bound1> or < bound2> is absent then the lower or
upper bound of the dimension (as declared) is implied, if both are missing then the whole dimension is
assumed.

Let us examine the above sections in detail,

2 A(:)

This runs from the declared lower bound to the declared upper bound so refers to the whole
array.

2 A(3:9)

De�nes the 7 element section running from A(3) to A(9). The stride is missing therefore is
assumed to be 1.

September 2, 1997 University of Liverpool

15.9. Printing Arrays 95

2 A(3:9:1)

Exactly the same section as above.

2 A(m:n)

From element A(m) to A(n).

2 A(m:n:k)

The section runs from m to n in strides of k.

2 A(8:3:-1)

This section runs from 8 to 3 in steps of -1.

2 A(8:3)

This section runs from 8 to 3 in steps of 1, i.e., this is a zero sized section.

2 A(m:)

This section runs from M to the declared upper bound in steps of 1.

2 A(:n)

This section runs from the declared lower bound to n in steps of 1.

2 A(::2)

This section runs from the declared lower bound to the upper bound in strides of 2.

2 A(m:m)

This is a one element array and is distinct from A(m) which is a scalar reference.

Question 18: Array Sections

Declare an array which would be suitable for representing draughts board. Write a program to
set all the white squares to zero and the black squares to unity. (A draughts board is 8 � 8 with
alternate black and white squares)

15.9 Printing Arrays

The conceptual ordering of array elements is useful for de�ning the order in which array elements are
output. If A is a 2D array then:

PRINT*, A

would produce output in Array Element Order:

A(1,1), A(2,1), A(3,1), ..., A(1,2), A(2,2), ...

Sections of arrays can also be output, for example,

PRINT*, A(::2,::2)

Fortran 90 Course Notes File: CourseNotes.ps

96 15. Arrays

would produce:

A(1,1), A(3,1), A(5,1), ..., A(1,3), A(3,3), A(5,3), ...

An array of more than one dimension is not formatted neatly, if it is desired that the array be printed
out row-by-row (or indeed column by column) then this must be programmed explicitly.

This order could be changed by using intrinsic functions such as RESHAPE, TRANSPOSE or CSHIFT.

15.10 Input of Arrays

Elements of an array can be read in and assigned to the array in array element order, for example,

READ*, A

would read data from the standard input and assign to the elements of A. The input data may be
punctuated by any number of carriage returns which are simply ignored.

Sections of arrays can also be input, for example,

READ*, A(::2,::2)

is perfectly valid and will assign to the indicated subsection of A.

15.10.1 Array I/O Example

Consider the matrix A:

1

3

4

5

6

8

9

2

7

Figure 12: Visualisation of the array A

The PRINT statements in the following program

PROGRAM Owt

IMPLICIT NONE

INTEGER, DIMENSION(3,3) :: A = RESHAPE((/1,2,3,4,5,6,7,8,9/))

September 2, 1997 University of Liverpool

15.11. Array Inquiry Intrinsics 97

PRINT*, 'Array element =',a(3,2)

PRINT*, 'Array section =',a(:,1)

PRINT*, 'Sub-array =',a(:2,:2)

PRINT*, 'Whole Array =',a

PRINT*, 'Array Transp''d =',TRANSPOSE(a)

END PROGARM Owt

produce on the screen,

Array element = 6

Array section = 1 2 3

Sub-array = 1 2 4 5

Whole Array = 1 2 3 4 5 6 7 8 9

Array Transposed = 1 4 7 2 5 8 3 6 9

15.11 Array Inquiry Intrinsics

These intrinsics allow the user to quiz arrays about their attributes and status and are most often
applied to dummy arguments in procedures. Consider the declaration:

REAL, DIMENSION(-10:10,23,14:28) :: A

the following inquiry intrinsics are available,

2 LBOUND(SOURCE[,DIM])

Returns a one dimensional array containing the lower bounds of an array or, if a dimension is
speci�ed, a scalar containing the lower bound in that dimension. For example,

� LBOUND(A) is (/-10,1,14/) (array);

� LBOUND(A,1) is -10 (scalar).

2 UBOUND(SOURCE[,DIM])

Returns a one dimensional array containing the upper bounds of an array or, if a dimension is
speci�ed, a scalar containing the upper bound in that dimension. For example,

� UBOUND(A) is (/10,23,28/)

� UBOUND(A,1) is 10.

2 SHAPE(SOURCE)

Returns a one dimensional array containing the shape of an object. For example,

� SHAPE(A) is (/21,23,15/) (array);

� SHAPE((/4/)) is (/1/) (array).

2 SIZE(SOURCE[,DIM])

Returns a scalar containing the total number of array elements either in the whole array or in an
optionally speci�ed dimension. For example,

� SIZE(A,1) is 21.

Fortran 90 Course Notes File: CourseNotes.ps

98 15. Arrays

� SIZE(A) is 7245.

� SIZE(4) is an error as the argument must not be scalar.

2 ALLOCATED(SOURCE)

Returns a scalar LOGICAL result indicating whether an array is allocated or not. For example,

PROGRAM Main

IMPLICIT NONE

INTEGER, ALLOCATABLE, DIMENSION(:) :: Vec

PRINT*, ALLOCATED(Vec)

ALLOCATE(Vec(10))

PRINT*, ALLOCATED(Vec)

DEALLOCATE(Vec)

PRINT*, ALLOCATED(Vec)

END PROGRAM Main

will produce .FALSE., .TRUE. and .FALSE. in that order.

Question 19: Inquiry intrinsics etc.

Given,

INTEGER, DIMENSION(-1:1,3,2) :: A

Write a small program which contains intrinsic function calls to show:

1. the total number of elements in A,

2. the shape of A

3. the lower bound in dimension 2

4. the upper bound in dimension 3

15.12 Array Constructors

Array constructors are used to give arrays or sections of arrays speci�c values. An array constructor is
a comma separated list of scalar expressions delimited by (/ and /). The results of the expressions
are placed into the array in array element order with any type conversions being performed in the same
manner as for regular assignment. The constructor must be of the correct length for the array, in other
words, the section and the constructor must conform.

For example,

PROGRAM MAin

IMPLICIT NONE

INTEGER, DIMENSION(1:10) :: ints

CHARACTER(len=5), DIMENSION(1:3) :: colours

REAL, DIMENSION(1:4) :: heights

September 2, 1997 University of Liverpool

15.13. The RESHAPE Intrinsic Function 99

heights = (/5.10, 5.6, 4.0, 3.6/)

colours = (/'RED ','GREEN','BLUE '/)

! note padding so strings are 5 chars

ints = (/ 100, (i, i=1,8), 100 /)

...

END PROGRAM MAin

The array and its constructor must conform.

Notice that all strings in the constructor for colours are 5 characters long. This is because the string
within the constructor must be the correct length for the variable.

(i, i=1,8) is an implied-DO speci�er and may be used in constructors to specify a sequence of
constructor values. There may be any number of separate implied DOs which may be mixed with other
speci�cation methods. In the above example the vector ints will contain the values (/ 100, 1,

2, 3, 4, 5, 6, 7, 8, 100 /). Note the format of the implied DO: a DO-loop index speci�cation
surrounded by parentheses.

There is a restriction that only one dimensional constructors are permitted, for higher rank arrays the
RESHAPE intrinsic must be used to modify the shape of the result of the RHS so that it conforms to
the LHS:

INTEGER, DIMENSION(1:3,1:4) :: board

board = RESHAPE((/11,21,31,12,22,32,13,23,33,14,24,34/), (/3,4/))

The values are speci�ed as a one dimensional constructor and then the shape is modi�ed to be a 3� 4
array which conforms with the declared shape of board.

Question 20: Array Constructor

Write an array constructor for the 5 element rank 1 array BOXES containing the values 1, 4, 6,

12, 23.

15.13 The RESHAPE Intrinsic Function

RESHAPE is a general intrinsic function which delivers an array of a speci�ed shape:

RESHAPE(SOURCE,SHAPE[,PAD][,ORDER])

Note,

2 the RESHAPE intrinsic changes the shape of SOURCE to the speci�ed SHAPE.

2 SOURCE must be intrinsic typed array, it cannot be an array of user-de�ned types.

2 SHAPE is a one dimensional array specifying the target shape. It is convenient to use an explicit
array constructor for this �eld in order to make things clearer.

2 PAD is a one dimensional array of values which is used to pad out the resulting array if there are
not enough values in SOURCE. The PAD constructor is used repeatedly (in array element order)
to provide enough elements for the result. PAD is optional.

Fortran 90 Course Notes File: CourseNotes.ps

100 15. Arrays

2 ORDER allows the dimensions to be permuted, in other words, allows the array element ordering
to be modi�ed, ORDER is optional.

For example, the following statement assigns SOURCE to A,

A = RESHAPE((/1,2,3,4/),(/2,2/))

The result of the RESHAPE is a 2� 2 array (speci�ed by the second argument (/2,2/)), the result is
�lled in array element order and looks like:

1 3

2 4

Visualisation,

1 2 3 4
1

2

3

4
RESHAPE

1 2 3 4
1

2

3

4
RESHAPE

Figure 13: Visualisation of the E�ect of the RESHAPE Intrinsic

Also consider

A = RESHAPE((/1,2,3,4/),(/2,2/),&

ORDER=(/2,1/))

This time the array is �lled up in row major form, (the subscripts of dimension 2 vary the quickest,)
this is speci�ed by the ORDER=(/2,1/) speci�er. The default ordering is, of course, ORDER=(/1,2/).
The ORDER keyword is necessary because some optional arguments are missing. A looks like

1 2

3 4

Clearly the result of RESHAPE must conform to the array object on the LHS of the =, consider,

RESHAPE((/1,2,3,4,5,6/),(/2,4/),(/0/),(/2,1/))

this has the value

1 2 3 4

5 6 0 0

The source object has less elements than the LHS so the resulting array is padded with the extra values
taken repeatedly from the third array argument, PAD, (/0/). Note how this reference does not use
keyword arguments, it is directly equivalent to,

September 2, 1997 University of Liverpool

15.14. Array Constructors in Initialisation Statements 101

RESHAPE(SOURCE=(/1,2,3,4,5,6/),&

SHAPE=(/2,4/), &

PAD=(/0/), &

ORDER=(/2,1/))

and

RESHAPE(SOURCE=(/1,2,3,4,5,6/),&

PAD=(/0/), &

SHAPE=(/2,4/), &

ORDER=(/2,1/))

If one of the optional arguments is absent then keyword arguments should be used for the other optional
argument to make it clear to the compiler (and the user) which is the missing argument. The keywords
are the names of the dummy arguments.

15.14 Array Constructors in Initialisation Statements

Named array constants of any rank can be created using the RESHAPE function as long as all components
can be evaluated at compile time (just like in initialisation expressions):

INTEGER, DIMENSION(3), PARAMETER :: Unit_vec = (/1,1,1/)

CHARACTER(LEN=*), DIMENSION(3), PARAMETER :: &

lights = (/'RED ','BLUE ','GREEN'/)

REAL, DIMENSION(3,3), PARAMETER :: &

unit_matrix = RESHAPE((/1,0,0,0,1,0,0,0,1/), (/3,3/))

Note how the string length of the PARAMETER lights can be assumed from the length of the constructor
values. The strings in the constructor must all be the same length.

Previously de�ned constants (PARAMETERs) may also be used to initialise variables, consider,

INTEGER, DIMENSION(3,3) :: &

unit_matrix_T = RESHAPE(unit_matrix, (/3,3/), ORDER=(/2,1/))

This assigns the transpose of unit matrix to unit matrix T.

Question 21: Travelling Salesman Problem

A salesman travels between 5 towns A, B, C, D, E whose distances apart are given in the fol-
lowing table:-

A B C D E
A 0 120 180 202 300
B 0 175 340 404
C 0 98 56
D 0 168
E 0

Which is the shortest route which takes in all the towns.

Fortran 90 Course Notes File: CourseNotes.ps

102 15. Arrays

15.15 Allocatable Arrays

Fortran 90 allows arrays to be created on-the-y; these are known as deferred-shape arrays and use
dynamic heap storage (this means memory can be grabbed, used and then put back at any point in
the program). This facility allows the creation of \temporary" arrays which can be created used and
discarded at will.

Deferred-shape arrays are:

2 declared like explicit-shape arrays but without the extents and with the ALLOCATABLE attribute:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages

REAL, DIMENSION(:,:), ALLOCATABLE :: speed

2 given a size in an ALLOCATE statement which reserves an area of memory for the object:

ALLOCATE(ages(1:10), STAT=ierr)

IF (ierr .NE. 0) THEN

PRINT*, "ages: Allocation request denied"

END IF

ALLOCATE(speed(-lwb:upb,-50:0),STAT=ierr)

IF (ierr .NE. 0) THEN

PRINT*, "speed: Allocation request denied"

END IF

In the ALLOCATE statement we could specify a list of objects to create but in general one should
only specify one array statement; if there is more than one object and the allocation fails it
is not immediately possible to tell which allocation was responsible. The optional STAT= �eld
reports on the success of the storage request, if it is supplied then the keyword must be used to
distinguish it from an array that needs allocating. If the result, (ierr,) is zero the request was
successful otherwise it failed. This speci�er should be used as a matter of course.

There is a certain overhead in managing dynamic or ALLOCATABLE arrays | explicit-shape arrays are
cheaper and should be used if the size is known and the arrays are persistent (are used for most of the
life of the program). The dynamic or heap storage is also used with pointers and obviously only has a
�nite size | there may be a time when this storage runs out. If this happens there may be an option
of the compiler to specify / increase the size of heap storage.

15.16 Deallocating Arrays

Heap storage should be reclaimed using the DEALLOCATE statement:

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr)

As a matter of course, the LOGICAL valued intrinsic inquiry function, ALLOCATED, should be used to
check on the status of the array before attempting to DEALLOCATE because it is an error to attempt
to deallocate an array that has not previously been allocated space or one which does not have the
ALLOCATE attribute. Again one should only supply one array per DEALLOCATE statement and the
optional STAT= �eld should always be used. ierr holds a value that reports on the success / failure
of the DEALLOCATE request in an analogous way to the ALLOCATE statement.

September 2, 1997 University of Liverpool

15.16. Deallocating Arrays 103

Memory leakage will occur if a procedure containing an allocatable array (which does not possess the
SAVE attribute) is exited without the array being DEALLOCATEd, (this constraint will be relaxed in
Fortran 95). The storage associated with this array becomes inaccessible for the whole of the life of
the program.

Consider the following sorting program which can handle any number of items,

PROGRAM sort_any_number

!---!

! Read numbers into an array, sort into ascending order !

! and display the sorted list !

!---!

INTEGER, DIMENSION(:), ALLOCATABLE :: nums

INTEGER :: temp, I, K, n_to_sort, ierr

PRINT*, 'How many numbers to sort'

READ*, n_to_sort

ALLOCATE(nums(1:n_to_sort), STAT=ierr)

IF (ierr .NE. 0) THEN

PRINT*, "nums: Allocation request denied"

STOP ! halts execution

END IF

PRINT*, 'Type in ',n_to_sort, 'values one line at a time'

DO I=1,n_to_sort

READ*, nums(I)

END DO

DO I = 1, n_to_sort-1

DO K = I+1, n_to_sort

IF(nums(I) > nums(K)) THEN

temp = nums(K) ! Store in temporary location

nums(K) = nums(I) ! Swap the contents over

nums(I) = temp

END IF

END DO

END DO

DO I = 1, n_to_sort

PRINT*, 'Rank ',I,' value is ',nums(I)

END DO

IF (ALLOCATED(nums)) DEALLOCATE(nums, STAT=ierr)

IF (ierr .NE. 0) THEN

PRINT*, "nums: Deallocation request denied"

END IF

END PROGRAM sort_any_number

Fortran 90 Course Notes File: CourseNotes.ps

104 15. Arrays

15.17 Masked Assignment | Where Statement

The WHERE statement is used when an array assignment is to be performed on a non-regular section of
the LHS array elements, in other words, the whole array assignment is masked so that it only applies
to speci�ed elements. Masked array assignment is achieved using the WHERE statement:

WHERE (I .NE. 0) A = B/I

the e�ect of this statement is to perform the assignment A(j,k) = B(j,k)/I(j,k) for all values of
j and k where the mask, (I(j,k) .NE. 0), is .TRUE.. In the cases where the mask is .FALSE. no
action is taken.

For example, if

B =

�
1:0 2:0
3:0 4:0

�
and,

I =

2 0

0 2

!

then

A =

0.5 �
� 2.0

!

Only the indicated elements, corresponding to the non-zero elements of I, have been assigned to.

Conformable array sections may be used in place of the whole arrays, for example,

WHERE (I(j:k,j:k) .NE. 0) A(j+1:k+1,j-1:k-1) = B(j:k,j:k)/I(j:k,j:k)

is perfectly valid.

Question 22: WHERE Statement

Write a WHERE statement that will take a 2D INTEGER array and negate all odd-valued positive
numbers.

15.18 Masked Assignment | Where Construct

Masked assignment may also be performed by a WHERE construct:

WHERE(A > 0.0)

B = LOG(A)

C = SQRT(A)

ELSEWHERE

B = 0.0 ! C is NOT changed

ENDWHERE

September 2, 1997 University of Liverpool

15.18. Masked Assignment | Where Construct 105

the e�ect of this code block is to perform the assignments B(j,k) = LOG(A(j,k)) and C(j,k) =

SQRT(A(j,k) wherever (A(j,k) > 0.0) is .TRUE.. For the cases where the mask is .FALSE. the
assignments in the ELSEWHERE block are made instead. Note that the WHERE ... END WHERE is not a
control construct and cannot currently be nested. This constraint will be relaxed in Fortran 95.

In all the above examples the mask, (the logical expression,) must conform to the implied shape of
each assignment in the body, in other words, in the above example all arrays must all conform.

The execution sequence is as follows: evaluate the mask, execute the WHERE block (in full) then execute
the ELSEWHERE block. The separate assignment statements are executed sequentially but the individual
elemental assignments within each statement are (conceptually) executed in parallel. It is not possible
to have a scalar on the LHS in a WHERE and all statements must be array assignments.

Consider the following example from the Fortran 90 standard (pp296{298).

The code is a 3-D Monte Carlo simulation of state transition. Each gridpoint is a logical variable
whose value can be interpreted as spin-up or spin-down. The transition between states is governed by
a local probabilistic process where all points change state at the same time. Each spin either ips to
the opposite state or not depending on the state of its six nearest neighbours. Gridpoints on the edge
of the cube are de�ned by cubic periodicity | in other words the grid is taken to be replicated in all
dimensions in space.

MODULE Funkt

CONTAINS

FUNCTION RAND (m)

INTEGER m

REAL, DIMENSION(m,m,m) :: RAND

CALL RANDOM_NUMBER(HARVEST = RAND)

RETURN

END FUNCTION RAND

END MODULE Funkt

PROGRAM TRANSITION

USE Funkt

IMPLICIT NONE

INTEGER, PARAMETER :: n = 16

INTEGER :: iterations, i

LOGICAL, DIMENSION(n,n,n) :: ising, flips

INTEGER, DIMENSION(n,n,n) :: ones, count

REAL, DIMENSION(n,n,n) :: threshold

REAL, DIMENSION(6) :: p

p = (/ 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 /)

iterations = 10

ising = RAND(n) .LE. 0.5

DO i = 1,iterations

ones = 0

WHERE (ising) ones = 1

count = CSHIFT(ones, -1, 1) + CSHIFT(ones, 1, 1) &

+ CSHIFT(ones, -1, 2) + CSHIFT(ones, 1, 2) &

+ CSHIFT(ones, -1, 3) + CSHIFT(ones, 1, 3)

WHERE (.NOT.ising) count = 6 - count

threshold = 1.0

Fortran 90 Course Notes File: CourseNotes.ps

106 15. Arrays

WHERE (count == 4) threshold = p(4)

WHERE (count == 5) threshold = p(5)

WHERE (count == 6) threshold = p(6)

flips = RAND(n) .LE. threshold

WHERE (flips) ising = .NOT. ising

ENDDO

END PROGRAM TRANSITION

Note CSHIFT performs a circular shift on an array, for example, if

A =
�
1 2 3 4

�
then

CSHIFT(A,-1)

is A shifted one place to the left with the left-most number wrapping around to the right,

A =
�
2 3 4 1

�
and is A shifted one place to the right

CSHIFT(A,1)

is

A =
�
4 1 2 3

�
It is also possible to specify a dimension for 2D and upward arrays. If

B =

0
@ 1 2 3

4 5 6
7 8 9

1
A

then

CSHIFT(B,1,1)

shifts the array one position in dimension 1 (downwards)

B =

0
@ 7 8 9

1 2 3
4 5 6

1
A

and

September 2, 1997 University of Liverpool

15.19. Vector-valued Subscripts 107

CSHIFT(B,1,2)

B =

0
@ 3 1 2

6 4 5
9 7 8

1
A

and so on.

Question 23: Array Masked Array Assignment

Using an array constructor and the WHERE statement, implement the following algorithm for �nding
prime numbers:

1. de�ne a vector, Prime, of size n,

2. initialise Prime such that Prime(i) = i for i = 1,n

3. set i = 2

4. for all j > i, (j 2 (i+1:n) if Prime(j) is exactly divisible by i then set Prime(j) = 0, [hint:
use the MOD (remainder) intrinsic in conjunction with a WHERE statement.]

5. increment i,

6. if i equals n then exit

7. if Prime(i) is zero then goto step 5

8. goto step 4

Print out all non-zero entries of the vector (the prime numbers).

Hint: the WHERE statement is an array assignment statement and not a control construct therefore it
cannot contain a PRINT statement. The PACK intrinsic can accept an array argument and a conformable
MASK and will return a 1D vector of all the elements of the array where the corresponding mask elements
are .TRUE..

Print*, PACK(Array,Mask)

15.19 Vector-valued Subscripts

Index indirection can be introduced by using vector-valued subscripts. A one dimensional vector can
be used to subscript an array in a dimension. The result of this is that an array section can be speci�ed
where the order of the elements do not follow a linear pattern. Consider:

INTEGER, DIMENSION(5) :: V=(/1,4,8,12,10/)

INTEGER, DIMENSION(3) :: W=(/1,2,2/)

Fortran 90 Course Notes File: CourseNotes.ps

108 15. Arrays

then A(V) is shorthand for the irregular section that contains A(1), A(4), A(8), A(12), and A(10) in
that order.

V

1 4 8 10 12

Figure 14: Subscripting Using a Vector

The following statement is a valid assignment to a 5 element section:

A(V) = 3.5

Likewise, if A contains the elements (5.3,6.4,..) then

C(1:3,1) = A(W)

would set the subsection C(1:3,1) to (5.3,6.4,6.4).

Vector-valued subscripts can be used on either side of the assignment operator, however, in order to
preserve the integrity of parallel array operations it would be invalid to assign values to A(W) because
A(2) would be assigned to twice. It must be ensured that subscripts on the LHS of the assignment
operator are unique.

It is only possible to use one dimensional arrays as vector subscripts, if a 2D section is to be de�ned
then two 1D vectors must be used, for example,

A(1) = SUM(C(V,W))

Note, vector subscripting is very ine�cient and should not be used unless absolutely necessary.

Question 24: Vector Subscripts / MAXLOC

Generate an arbitrary 1D array, vector, �lled with random numbers between 0 and 1. By using the
MAXLOC intrinsic with a suitable mask set up an integer array, VSubs, which contains a permuted index
set of vector such that Vector(VSubs(i)) > Vector(VSubs(i+1)) for all valid i.

You may �nd it useful to use the MAXLOC intrinsic. For example,

MAXLOC(VSubs)

September 2, 1997 University of Liverpool

109

returns an array containing the index of the largest element of the array VSubs, and,

MAXLOC(VSubs,MASK=VSubs.LT.VSubs(i))

returns the position of the largest element that is less than the value of VSubs(i). In both cases
the result is a one element 1D array. (The array contains one element because VSub only has one
dimension.)

16 Selected Intrinsic Functions

16.1 Random Number Intrinsic

RANDOM NUMBER(HARVEST) is a useful intrinsic especially when developing and testing code. It is an
elemental SUBROUTINE so when invoked with a REAL valued argument (which has INTENT(OUT)), it
will return, in its argument, a pseudorandom number or conformable array of pseudorandom numbers
in the range 0 � x < 1.

For example,

REAL :: HARVEST

REAL, DIMENSION(10,10) :: HARVEYS

CALL RANDOM_NUMBER(HARVEST)

CALL RANDOM_NUMBER(HARVEYS)

will assign a random number to the scalar variable HARVEST and an array of (di�erent) random numbers
to HARVEYS. This subroutine is very useful for numeric applications where large arrays need to be
generated in order to test or time codes.

The random number generator can be seeded by user speci�ed values. The seed is an integer array of a
compiler dependent size. Using the same seed on separate invocations will generate the same sequence
of random numbers.

RANDOM SEED([SIZE=< int>]) �nds the size of the seed.

RANDOM SEED([PUT=<array>]) seeds the random number generator.

For example,

CALL RANDOM_SEED(SIZE=isze)

CALL RANDOM_SEED(PUT=IArr(1:isze))

CALL RANDOM_NUMBER(HARVEST)

PRINT*, "Type in a scalar seed for the generator"

READ*, iseed

CALL RANDOM_SEED(PUT=(/(iseed, i = 1, isze)/))

CALL RANDOM_NUMBER(HARVEST)

ALLOCATE(ISeedArray(isze))

PRINT*, "Type in a ", isze," element array as a seed for the generator"

READ*, ISeedArray

Fortran 90 Course Notes File: CourseNotes.ps

110 16. Selected Intrinsic Functions

CALL RANDOM_SEED(PUT=ISeedArray)

CALL RANDOM_NUMBER(HARVEST)

DEALLOCATE(ISeedArray)

Using the same seed on separate executions will generate the same sequence of random numbers.

There are other optional arguments which can be used to report on which seed is in use and report on
how big an array is needed to hold a seed. This procedure may also be called with no arguments in
order to initialise the random number generator.

Question 25: Random Number Generation

Using the intrinsic subroutine RANDOM NUMBER, write a program to simulate the throw of a die.

16.2 Vector and Matrix Multiply Intrinsics

There are two types of intrinsic matrix multiplication these should always be used when appropriate as
they will be the most e�cient method of calculation:

2 DOT PRODUCT(VEC1, VEC2)

This is the inner (dot) product of two rank 1 arrays. Clearly, VEC1, VEC2 must conform in size
and must be one dimensional. Care must be taken not to confuse this intrinsic with DPROD the
DOUBLE PRECISION product function or PRODUCT the intra-matrix product (see Section 16.5).

An example of use is,

DP = DOT_PRODUCT(A,B)

which is equivalent to:

DP = A(1)*B(1) + A(2)*B(2) + ...

or

DP = SUM(A*B)

The result is also de�ned for COMPLEX and LOGICAL array arguments. For COMPLEX the result is,

DP = SUM(CONJG(A)*B)

and for LOGICAL,

DP = LA(1).AND.LB(1) .OR. LA(2).AND.LB(2) .OR. ...

2 MATMUL(MAT1, MAT2)

This is the `traditional' matrix-matrix multiplication and is not equivalent to MAT1*MAT2. There
are certain restrictions placed on the function arguments which say that the arrays must match
in speci�c dimensions, they do not have to be conformable:

September 2, 1997 University of Liverpool

16.2. Vector and Matrix Multiply Intrinsics 111

� if MAT1 has shape (n;m) and MAT2 shape (m; k) then the result has shape (n; k);

� if MAT1 has shape (m) and MAT2 shape (m; k) then the result has shape (k);

� if MAT1 has shape (n;m) and MAT2 shape (m) then the result has shape (n);

Element (i,j) of the result is,

SUM(MAT1(i,:)*MAT2(:,j))

The result is also de�ned for LOGICAL arguments,

ANY(MAT1(i,:).AND.MAT2(:,j))

If A and B are set up as follows,

A =

�
1 2 3 4
5 6 7 8

�

and

B =

0
BB@

4 8
3 7
2 6
1 5

1
CCA

then the following program

PROGRAM DEMO

INTEGER :: A(2,4)

INTEGER :: B(4,2)

A(1,:) = (/1,2,3,4/)

A(2,:) = (/5,6,7,8/)

B(:,1) = (/4,3,2,1/)

B(:,2) = (/8,7,6,5/)

PRINT*, "DOT_PRODUCT(A(1,:),A(2,:)) = ", DOT_PRODUCT(A(1,:),A(2,:))

PRINT*, "MATMUL(A,B) = ",MATMUL(A,B)

END PROGRAM DEMO

gives

DOT_PRODUCT(A(1,:),A(2,:)) = 70

MATMUL(A,B) = 20 60 60 164

Question 26: MATMUL Intrinsic

For the declarations

REAL, DIMENSION(100,100) :: A, B, C

what is the di�erence between C=MATMUL(A,B) and C=A*B.

Fortran 90 Course Notes File: CourseNotes.ps

112 16. Selected Intrinsic Functions

16.3 Maximum and Minimum Intrinsics

There are two intrinsics in this class:

2 MAX(SOURCE1,SOURCE2[,SOURCE3[,...]])| returns the maximum values over all source ob-
jects

2 MIN(SOURCE1,SOURCE2[,SOURCE3[,...]])| returns the minimum values over all source ob-
jects

For example,

2 MAX(1,2,3) is 3

2 MIN(1,2,3) is 1

The list of source objects are searched from left to right (as indicated in the diagram below). If two
values are equal then it is the �rst that is selected (as also indicated in the diagram below).

7 -2 8 10109 4 2 7 2 1

MAX(X)

Figure 15: Visualisation of the MAX Intrinsic

The MAX and MIN intrinsics may also accept array arguments. The result is the same shape and size
as each argument, for example,

2 MIN((/1,2/),(/-3,4/)) is (/-3,2/)

2 MAX((/1,2/),(/-3,4/)) is (/1,4/)

Question 27: MAX and MIN

What is the value of:

2 MAX((/2,7,3,5,9,1/),(/1,9,5,3,7,2/))?

2 MIN((/2,7,3,5,9,1/),(/1,9,5,3,7,2/))?

September 2, 1997 University of Liverpool

16.4. Array Location Intrinsics 113

16.4 Array Location Intrinsics

There are two intrinsics in this class:

2 MAXLOC(SOURCE[,MASK])

Returns a one dimensional array containing the location of the �rst maximal value in an array
under an optional mask. If the MASK is present the only elements considered are where the mask
is .TRUE.. Note that the result is always array valued.

The source array is searched from left to right and the position of the �rst occurrence of the
maximum value is returned,

7 -2 8 10109 4 2 7 2 1

MAXLOC(X) = (/6/)

Figure 16: Visualisation of MAXLOC When Applied to a 1D Array

Consider this further 2D example, if

Array =

0
@ 0 �1 1 6 �4

1 �2 5 4 �3
3 8 3 �7 0

1
A

then

� MAXLOC(Array) is (/3,2/) corresponding to the location of value 8.

� MAXLOC(Array,Array.LE.7) is (/1,4/)

Only the following elements are considered,

Array =

0
@ 0 �1 1 6 �4

1 �2 5 4 �3
3 3 �7 0

1
A

the maximal value is at the location indicated.

� MAXLOC(MAXLOC(Array,Array.LE.7))

MAXLOC(Array,Array.LE.7) gives (/1,4/) so the overall result is (/2/) (array valued)
corresponding to the location that holds the largest element of the array (/1,4/).

2 MINLOC(SOURCE[,MASK])

Returns a one dimensional array containing the location of the �rst minimal value in an array
under an optional mask.

� MINLOC(Array) is (/3,4/)

The minimal value -7 is element A(3,4).

� MINLOC(Array,Array.GE.7) is gives (/3,2/).

� MINLOC(MINLOC(Array,Array.GE.7))

This is e�ectively MINLOC((/3,2/)) so the result is (/2/) (array valued) corresponding
to the second element of the array (/3,2/).

Fortran 90 Course Notes File: CourseNotes.ps

114 16. Selected Intrinsic Functions

Question 28: MAXLOC

What is the value of:

2 MAXLOC((/2,7,3,5,9,1/))?

2 MAXVAL((/2,7,3,5,9,1/))?

2 MINLOC((/2,7,3,5,9,1/))?

2 MINVAL((/2,7,3,5,9,1/))?

If

A =

0
@ 0 �5 8 3

3 4 �1 2
1 5 6 �4

1
A

what is

2 MAXLOC(A, MASK = A .LT. 5)?

2 MAXVAL(A, MASK = A .LT. 5)?

2 MAXLOC(A, MASK = A .LT. 4)?

2 MAXVAL(A, MASK = A .LT. 4)?

16.5 Array Reduction Intrinsics

Reduction functions are aptly named because an array is operated upon and a result obtained which
has a smaller rank than the original source array. For a rank n array, if DIM is absent or n = 1 then
the result is scalar, otherwise the result is of rank n� 1.

2 SUM(SOURCE[,DIM][,MASK])

� SUM returns the sum of array elements, along an optionally speci�ed dimension under an
optionally speci�ed mask.

� if DIM is absent the whole array is considered and the result is a scalar.

September 2, 1997 University of Liverpool

16.5. Array Reduction Intrinsics 115

7 -2 8 10109 4 2 7 2 1
+ + + ++ + + + + +

= 58

SUM(W) = 58

Figure 17: SUM of a 1D Array

If DIM is not speci�ed for the SUM of a 2D array then the result is obtained by adding all
the elements together

7 -2 8 109 4 2 7 2 1

+ + ++ + + + + ++

10

710 1 10 -2 -2 -297 27
+ = 105

SUM(X) = 105

Figure 18: SUM of a 2D Array

� if DIM is speci�ed the result is an array of rank n� 1 of sums, for example, summing down
the columns

7 -2 8 109 4 2 7 2 110

710 1 10 -2 -2 -297 27
+

D
i
m
e
n
s
i
o
n

1

16 517 5 8 8 0 14 12 11 -1

SUM(X,DIM=1) = (/17,16,5,5,8,8,0,14,12,11,-1/)

Figure 19: Summing along Dimension 1 of a 2D Array

or along the rows,

Fortran 90 Course Notes File: CourseNotes.ps

116 16. Selected Intrinsic Functions

7 -2 8 109 4 2 7 2 1

+ + ++ + + + + ++

10

710 1 10 -2 -2 -297 27

58

47

Dimension 2

SUM(X,DIM=2) = (/58,47/)

Figure 20: Summing along Dimension 2 of a 2D Array

� if MASK is present then the sum only involves elements of SOURCE which correspond to
.TRUE. elements of MASK, for example, only the elements larger than 6 are considered,

7 -2 8 109 4 2 7 2 1
+ + + +

= 51

+

SUM(W,MASK=W>6) = 51

10

Figure 21: SUM Under the Control of a Mask

� if the array is zero sized then the sum is 0

2 PRODUCT(SOURCE[,DIM][,MASK])

� PRODUCT returns the product of all array elements, along an optionally speci�ed dimension
under an optionally speci�ed mask,

� if DIM is absent the whole array is considered and the result is a scalar.

� if DIM is speci�ed the result is an array of rank n� 1 of products, for example, if

A =

�
1 3 5
2 4 6

�

PRINT*, PRODUCT(A,DIM=1)

PRINT*, PRODUCT(A,DIM=2)

gives

2 12 30

15 48

� if MASK is present then the product only involves elements of SOURCE which correspond to
.TRUE. elements of MASK, for example,

September 2, 1997 University of Liverpool

16.5. Array Reduction Intrinsics 117

PRINT*, PRODUCT(A,MASK=A.LT.4)

gives

6

� if the array is zero sized then the product is 1.

2 ALL(MASK[,DIM])

� ALL returns .TRUE. if all values of the mask are .TRUE. (along an optionally speci�ed)
dimension DIM. If DIM is speci�ed then the result is an array of rank n � 1, otherwise a
scalar is returned.

For example, consider a 2D array, if DIM=2 then the function returns a 1D vector with the
result being as if the ALL function has been applied to each column in turn. If DIM=1 the
result is as if the ALL function had been applied to each row in turn.

If A is as before, and

B =

�
0 3 5
7 4 8

�

then the following

PRINT*, ALL(A.NE.B,DIM=1)

gives

T F F

recall that dimension 1 runs up and down the page.

Similarly

PRINT*, ALL(A.NE.B,DIM=2)

gives,

F F

where dimension 2 run across the page.

� if DIM is absent then the whole array is considered, for example,

PRINT*, ALL(A.NE.B)

gives the scalar value,

F

� if the array is zero sized then ALL returns .TRUE.,

2 ANY(MASK[,DIM])

� ANY returns .TRUE. if any values of the mask are .TRUE. (along an optionally speci�ed
dimension DIM). If DIM is given then the result is an array of rank n� 1, for example,

PRINT*, ANY(A.NE.B,DIM=1)

PRINT*, ANY(A.NE.B,DIM=2)

gives

T F T

T T

Fortran 90 Course Notes File: CourseNotes.ps

118 16. Selected Intrinsic Functions

� if DIM is absent then the whole array is considered, for example,

PRINT*, ANY(A.NE.B)

gives the scalar value,

T

� if the array is zero sized then ANY returns .FALSE..

2 COUNT(MASK[,DIM])

� COUNT returns the number of .TRUE. elements in a speci�ed LOGICAL array along dimension
DIM. The result is an array of rank n� 1, for example,

PRINT*, COUNT(A.NE.B,DIM=1)

PRINT*, COUNT(A.NE.B,DIM=2)

gives

2 0 1

1 2

� if DIM is absent then the whole array is considered, for example,

PRINT*, COUNT(A.NE.B)

gives the scalar,

3

� if the array is zero sized then COUNT returns zero.

2 MAXVAL(SOURCE[,DIM][,MASK])

� MAXVAL returns the maximum values in an array along an optionally speci�ed dimension
under an optionally speci�ed mask,

� if DIM is speci�ed the result is an array of rank n�1 of maximum values in other dimensions,
for example,

PRINT*, MAXVAL(A,DIM=1)

PRINT*, MAXVAL(A,DIM=2)

gives

2 4 6

5 6

� if DIM is absent the whole array is considered and the result is a scalar.

� if MASK is present then the survey is only performed on elements of SOURCE which correspond
to .TRUE. elements of MASK, for example,

PRINT*, MAXVAL(A,MASK=A.LT.4)

only considers elements of A that are less than 4 and gives

3

� the largest negative number of the appropriate kind is returned if the array is zero sized.

2 MINVAL(SOURCE[,DIM][,MASK])

September 2, 1997 University of Liverpool

16.5. Array Reduction Intrinsics 119

� MINVAL returns the minimum value in an array along an optionally speci�ed dimension under
an optionally speci�ed mask,

� if DIM is speci�ed the result is an array of rank n�1 of minimum values in other dimensions,
for example,

PRINT*, MINVAL(A,DIM=1)

PRINT*, MINVAL(A,DIM=2)

gives

1 3 5

1 2

� if DIM is absent the whole array is considered and the result is a scalar.

� if MASK is present then the survey is only performed on elements of SOURCE which correspond
to .TRUE. elements of MASK, for example,

PRINT*, MINVAL(A,MASK=A.GT.4)

gives

5

� the smallest positive number of the appropriate kind is returned if the array is zero sized.

Question 29: Summation Example

Which �ve consecutive numbers have the greatest sum:

6.3 7.6 9.2 3.4 5.6 7.23 9.76 6.83 5.45 4.56

4.86 5.8 6.4 7.43 7.87 8.6 9.25 8.9 8.4 7.23

Question 30: Operations on arrays and array intrinsics

Declare constant arrays A and X where:

A =

� �4 5 9
6 �7 8

�

X =

0
BBBB@

1:5
�1:9
1:7
�1:2
0:3

1
CCCCA

1. Using the relevant intrinsics set M and N to be the extents of A,

2. Print the array A out row by row,

3. Write a Fortran 90 program which use intrinsics to print out the following:

Fortran 90 Course Notes File: CourseNotes.ps

120 16. Selected Intrinsic Functions

(a) The sum of the product of the columns of A (use intrinsics)

(b) The product of the sum of the row elements of A (use intrinsics)

(c) The sum of squares of the elements of X

(d) The mean of the elements of X

(e) The sum of the positive elements of X

(f) The in�nity norm of X i.e. the largest of (jxij; i = 1; n)

(g) The one norm of A i.e. the largest column sum of jaij j

Question 31: Salaries Example

The salaries received by employees of a company are

10500, 16140, 22300, 15960, 14150, 12180, 13230, 15760, 31000

and the position in the hierarchy of each employee is indicated by a corresponding category thus

1, 2, 3, 2, 1, 1, 1, 2, 3

Write a program to �nd the total cost to the company of increasing the salary of people in categories
1, 2 and 3 by 5%, 4% and 2% respectively.

September 2, 1997 University of Liverpool

Module 6:
Procedures

17 Program Units

Fortran 90 has two main program units:

2 main PROGRAM,

The place where execution begins and where control should eventually return before the program
terminates. The main program may contain any number of procedures.

2 MODULE.

A program unit which can also contain procedures and declarations. It is intended to be attached
to any other program unit where the entities de�ned within it become accessible. A module is
similar to a C++ class.

MODULE program units are new to Fortran 90 and are supposed to replace the unsafe Fortran 77
features such as COMMON, INCLUDE, BLOCK DATA as well as adding a much needed (limited) `object
oriented' aspect to the language. Their importance cannot be overstressed and they should be
used whenever possible.

There are two classes of procedure:

2 SUBROUTINE,

A parameterised named sequence of code which performs a speci�c task and can be invoked
from within other program units by the use of a CALL statement, for example,

CALL PrintReportSummary(CurrentFigures)

Here, control will pass into the SUBROUTINE named PrintReportSummary, after the SUBROUTINE
has terminated control will pass back to the line following the CALL.

2 FUNCTION,

As a SUBROUTINE but returns a result in the function name (of any speci�ed type and kind).
This can be compared to a mathematical function, say, f(x). An example of a FUNCTION call
could be:

PRINT*, "The result is", f(x)

Here, the value of the function f (with the argument x) is substituted at the appropriate point
in the output.

Procedures are generally contained within a main program or a module. It is also possible to have
`stand alone' or EXTERNAL procedures, these will be discussed later (see Section 28).

121

122 17. Program Units

17.1 Main Program Syntax

This is the only compulsory program unit, every program must have one:

[PROGRAM [<main program name>]]
. . .

< declaration of local objects>
. . .

< executable stmts>
. . .

[CONTAINS
< internal procedure de�nitions>]

END [PROGRAM [<main program name>]]

The PROGRAM statement and <main program name> are optional, however, it is good policy to always
use them. <main program name> can be any valid Fortran 90 name.

The main program contains declarations and executable statements and may also contain internal
procedures. These internal procedures are separated from the surrounding program unit, the host (in
this case the main program), by a CONTAINS statement. Internal procedures may only be called from
within the surrounding program unit and automatically have access to all the host program unit's
declarations but may also override them. Please note that some implementation of HPF may not yet
support internal procedures.

! ...

! Executable stmts

SUBROUTINE Sub1(..)

END SUBROUTINE Sub1

! etc.

FUNCTION Funkyn(...)

! Executable stmts

END FUNCTION Funkyn

PROGRAM Main

END PROGRAM Main

CONTAINS ! Internal Procs

Figure 22: Schematic Diagram of a Main Program

Internal procedures may not contain further internal procedures, in other words the nesting level is a
maximum of 1. The diagram shows two internal procedures, Sub1 and Funkyn however, there may
be any number of internal procedures (subroutines or functions) which are wholly contained within the
main program.

The main program may also contain calls to external procedures. This will be discussed later (see
Section 28).

September 2, 1997 University of Liverpool

17.2. Procedures 123

The main program must contain an END statement as its last (non-blank) line. For neatness sake this
should really be su�xed by PROGRAM (so it reads END PROGRAM) and should also have the name of the
program attached too. Using as descriptive as possible END statements helps to reduce confusion.

17.1.1 Main Program Example

The following example demonstrates a main program which calls an intrinsic function, (FLOOR), and
an internal procedure, (Negative)

PROGRAM Main

IMPLICIT NONE

REAL x

INTRINSIC FLOOR

READ*, x

PRINT*, FLOOR(x)

PRINT*, Negative(x)

CONTAINS

REAL FUNCTION Negative(a)

REAL, INTENT(IN) :: a

Negative = -a

END FUNCTION Negative

END PROGRAM Main

Although not totally necessary, the intrinsic procedure is declared in an INTRINSIC statement (the
type is not needed | the compiler knows the types of all intrinsic functions).

The internal procedure is `contained within' the main program so does not require declaring in the
main program;

The compiler is able to `see' the procedure and therefore knows its result type, number and type of
arguments.

17.2 Procedures

A procedure, such as an intrinsic function, is an abstracted block of parameterised code that performs
a particular task. Procedures should generally be used if a task has to be performed two or more times,
this will cut down on code duplication.

Before writing a procedure the �rst question should be: \Do we really need to write this or does a
routine already exist?" Very often a routine with the functionality already exists, for example, as an
intrinsic procedure or in a library somewhere. (Fortran 90 has 113 intrinsic procedures covering a
variety of functionality and the NAg fl90 Numerical Library contains over 300 mathematic procedures
so there is generally a wide choice!)

The NAg library deals with solving numerical problems and is ideal for engineers and scientists. fl90,
the NAg Fortran 90 Mk I library, has just been released as a successor to the well respected and popular
Fortran 77 library which contains at least 1140 routines.

Other libraries include: BLAS, (Basic Linear Algebra Subroutines,) for doing vector, matrix-vector and
matrix-matrix calculations, (these should always be used if possible); IMSL (Visual Numerics), akin to
NAg Library; LaPACK, linear algebra package; Uniras, graphics routines, very comprehensive. Many
of these packages will be optimised and shipped along with the compiler.

Fortran 90 Course Notes File: CourseNotes.ps

124 17. Program Units

Note that the HPFF de�ned a set of routines that should be available as part of an HPF compilation
system. If the target platform is to be a parallel computer it will be worth investigating further; a
number of Fortran 90 version of these procedures exist, for example, at LPAC

http://www.lpac.ac.uk/SEL-HPC/Materials/HPFlibrary/HPFlibrary.html

.

As the use of Fortran 90 grows many useful (portable) library modules will be developed which contain
routines that can be USEd by any Fortran 90 program. See World Wide Web Fortran Market

http://www.fortran.com/fortran/market.html

.

There is also an auxiliary Fortran 90 standard known as the \Varying String" module. This is to be
added to the Fortran 95 standard and will allow users to de�ne and use objects of type VARYING STRING

where CHARACTER objects would normally be used. The Standard has already been realised in a module
(by Lawrie Schonfelder at Liverpool University). All the intrinsic operations and functions for character
variables have be overloaded so that VARYING STRING objects can be used in more or less the same
way as other intrinsic types. which contain routines that can be USEd by any Fortran 90 program. See
World Wide Web Fortran Market

http://www.fortran.com/fortran/market.html

.

If a procedure is to be written from scratch then the following guidelines should be followed:

2 It is generally accepted that procedures should be no more than 50 lines long in order to keep
the control structure simple and to keep the number of program paths to a minimum.

2 Procedures should be as exible as possible to allow for software reuse. Try to pass as many
of the variable entities referenced in a procedure as actual arguments and do not rely on global
storage or host association unless absolutely necessary.

2 Try to give procedures meaningful names and initial descriptive comments.

2 There is absolutely no point in reinventing the wheel | if a procedure or collection of procedures
already exist as intrinsic functions or in a library module then they should be used.

17.3 Subroutines

Consider the following example,

PROGRAM Thingy

IMPLICIT NONE

.....

CALL OutputFigures(Numbers)

.....

CONTAINS

September 2, 1997 University of Liverpool

17.4. Functions 125

SUBROUTINE OutputFigures(Numbers)

REAL, DIMENSION(:), INTENT(IN) :: Numbers

PRINT*, "Here are the figures", Numbers

END SUBROUTINE OutputFigures

END PROGRAM Thingy

The subroutine here simply prints out its argument. Internal procedures can `see' all variables declared
in the main program (and the IMPLICIT NONE statement). If an internal procedure declares a variable
which has the same name as a variable from the main program then this supersedes the variable from
the outer scope for the length of the procedure.

Using a procedure here allows the output format to be changed easily. To alter the format of all
outputs, it is only necessary to change on line within the procedure.

Internal subroutines lie between CONTAINS and END PROGRAM statements and have the following syntax

SUBROUTINE < procname>[(< dummy args>)]
< declaration of dummy args>
< declaration of local objects>

. . .
< executable stmts>

END [SUBROUTINE [< procname>]]

(Recall that not all HPF compilers implement Internal subroutines.)

A SUBROUTINE may include calls to other procedures either from the same main program, from an
attached module or from an external �le. Note how, in the same way as a main program, a SUBROUTINE
must terminate with an END statement. It is good practice to append SUBROUTINE and the name of
the routine to this line as well.

Fortran 90 also allows recursive procedures (procedure that call themselves). In order to promote
optimisation a recursive procedure must be speci�ed as such | it must have the RECURSIVE keyword
at the beginning of the subroutine declaration (see Section 18.10).

Question 32: Simple example of Subroutine

Write a main program and internal subroutine that returns, as its �rst argument, the sum of two
real numbers.

17.4 Functions

Consider the following example,

PROGRAM Thingy

IMPLICIT NONE

.....

PRINT*, F(a,b)

.....

CONTAINS

REAL FUNCTION F(x,y)

REAL, INTENT(IN) :: x,y

Fortran 90 Course Notes File: CourseNotes.ps

126 17. Program Units

F = SQRT(x*x + y*y)

END FUNCTION F

END PROGRAM Thingy

Functions operate on the same principle as SUBROUTINEs, the only di�erence being that a function
returns a value. In the example, the line

PRINT*, F(a,b)

will substitute the value returned by the function for F(a,b), in other words, the value of
p
a2 + b2.

Just like subroutines, functions also lie between CONTAINS and END PROGRAM statements. They have
the following syntax:

[< pre�x>] FUNCTION < procname>([< dummyargs>])
< declaration of dummy args>
< declaration of local objects>

. . .
< executable stmts, assignment of result>

END [FUNCTION [< procname>]]

It is also possible to declare the function type in the declaration area instead of in the header:

FUNCTION < procname>([< dummy args>])
< declaration of dummy args>
< declaration of result type>
< declaration of local objects>

. . .
< executable stmts, assignment of result>

END [FUNCTION [< procname>]]

This would mean that the above function could be equivalently declared as:

FUNCTION F(x,y)

REAL :: F

REAL, INTENT(IN) :: x,y

F = SQRT(x*x + y*y)

END FUNCTION F

(Recall that not all HPF compilers implement internal functions.)

Functions may also be recursive, see Section 18.10, and may be either scalar or array valued (including
user de�ned types and pointers). Note that, owing to the possibility of confusion between an array
reference and a function reference, the parentheses are not optional.

Question 33: Simple example of a Function

Write a main program and an internal function that returns the sum of two real numbers supplied
as arguments.

September 2, 1997 University of Liverpool

17.5. Argument Association 127

Question 34: Random Number Generation

Write a function which simulates a throw of two dice and returns the total score. Use the in-
trinsic subroutine RANDOM NUMBER to obtain pseudo-random numbers to simulate the throw of the
dice.

17.5 Argument Association

Recall, in the SUBROUTINE example we had an invocation:

CALL OutputFigures(NumberSet)

and a declaration,

SUBROUTINE OutputFigures(Numbers)

An argument in a call statement (in an invocation), for example, NumberSet, is called an actual

argument since it is the true name of the variable. An argument in a procedure declaration is called
a dummy argument, for example, Numbers as it is a substitute for the true name. A reference to a
dummy argument is really a reference to its corresponding actual argument, for example, changing the
value of a dummy argument actually changes the value of the actual argument. Dummys and actuals
are said to be argument associated. Procedures may have any number of such arguments but actuals
and dummys must correspond in number, type, kind and rank. [Fortran 77 programs which outed
this requirement were not standard conforming but there was no way for the compiler to check.]

For the above call, Numbers is the dummy argument and NumberSet is the actual argument.

Consider,

PRINT*, F(a,b)

and

REAL FUNCTION F(x,y)

here, the actual arguments a and b are associated with the dummy arguments x and y.

If the value of a dummy argument changes then so does the value of the actual argument.

17.6 Local Objects

In the following procedure

SUBROUTINE Madras(i,j)

INTEGER, INTENT(IN) :: i, j

REAL :: a

REAL, DIMENSION(i,j):: x

Fortran 90 Course Notes File: CourseNotes.ps

128 17. Program Units

a, and x are known as local objects and x will probably have a di�erent size and shape on each call..
They:

2 are created each time a procedure is invoked,

2 are destroyed when the procedure completes,

2 do not retain their values between calls,

2 do not exist in the programs memory between calls.

So, when a procedure is called, any local objects are bought into existence for the duration of the call.
Thus if an object is assigned to on one call, the next time the program unit is invoked a totally di�erent
instance of that object is created with no knowledge of what happened during the last procedure call
meaning that all values are lost.

The space usually comes from the programs stack.

17.7 Argument Intent

In order to facilitate e�cient compilation and optimisation hints, in the form of attributes, can be given
to the compiler as to whether a given dummy argument will:

1. hold a value on procedure entry which remains unchanged on exit | INTENT(IN).

2. not be used until it is assigned a value within the procedure | INTENT(OUT).

3. hold a value on procedure entry which may be modi�ed and then passed back to the calling
program | INTENT(INOUT).

For example,

SUBROUTINE example(arg1,arg2,arg3)

REAL, INTENT(IN) :: arg1

INTEGER, INTENT(OUT) :: arg2

CHARACTER, INTENT(INOUT) :: arg3

REAL r

r = arg1*ICHAR(arg3)

arg2 = ANINT(r)

arg3 = CHAR(MOD(127,arg2))

END SUBROUTINE example

It can be seen here that:

2 arg1 is unchanged within the procedure,

2 the value of arg2 is not used until it has been assigned to,

2 arg3 is used and then reassigned a value.

The use of INTENT attributes is not essential but it allows good compilers to check for coding errors
thereby enhancing safety. If an INTENT(IN) object is assigned a value or if an INTENT(OUT) object is
not assigned a value then errors will be generated at compile time.

September 2, 1997 University of Liverpool

17.8. Scope 129

Question 35: Erroneous Code

What is wrong with the following internal procedure?

SUBROUTINE Mistaken(A,B,C)

IMPLICIT NONE

REAL, INTENT(IN) :: A

REAL, INTENT(OUT) :: C

A = 2*C

END SUBROUTINE Mistaken

17.8 Scope

The scope of an entity is the range of a program within which an entity is visible and accessible. Most
entities have a scope which is limited to the program unit in which they are declared, but in special
circumstances some entities can have a scope that is wider than this. The best way to provide global
data is by implementing a MODULE which contains the required global data declarations and then USEing
it wherever required. (Using COMMON to achieve this is strongly discouraged as this method of global
data declaration is considered to be unsafe, obtuse and outmoded.)

17.8.1 Host Association

In Fortran 77, di�erent routines were entirely separate from each other, they did not have access
to each others variable space and could only communicate through argument lists or by global storage
(COMMON); such procedures are known as external.

Procedures in Fortran 90 may contain internal procedures which are only visible within the program
unit in which they are declared, in other words they have a local scope. Consider the following example,

PROGRAM CalculatePay

IMPLICIT NONE

REAL :: Pay, Tax, Delta

INTEGER :: NumberCalcsDone = 0

Pay = ...; Tax = ... ; Delta = ...

CALL PrintPay(Pay,Tax)

Tax = NewTax(Tax,Delta)

....

CONTAINS

SUBROUTINE PrintPay(Pay,Tax)

REAL, INTENT(IN) :: Pay, Tax

REAL :: TaxPaid

TaxPaid = Pay * Tax

PRINT*, TaxPaid

NumberCalcsDone = NumberCalcsDone + 1

END SUBROUTINE PrintPay

REAL FUNCTION NewTax(Tax,Delta)

REAL, INTENT(IN) :: Tax, Delta

NewTax = Tax + Delta*Tax

NumberCalcsDone = NumberCalcsDone + 1

END FUNCTION NewTax

Fortran 90 Course Notes File: CourseNotes.ps

130 17. Program Units

END PROGRAM CalculatePay

PrintPay is an internal subroutine of CalculatePay and has access to NumberCalcsDone. It can be
thought of as a global variable. It is said to be available to the procedures by host association. The
variables Pay and Tax, on the other hand, are passed as arguments to the procedures. This means
that they are available by argument association.

The decision of whether to give visibility to an object by host association or by argument association is
tricky | there are no hard and fast rules. If, for example, Pay, Tax and Delta had not been passed to
the procedures as arguments but had been made visible by host association instead, then there would be
no discernible di�erence in the results that the program produces. Likewise, NumberCalcsDone could
have been communicated to both procedures by argument association instead of by host association.
In a sense, the method that is used will depend on personal taste or a speci�c `in-house' coding-style.
Here, Pay, Tax and Delta are not used in every single procedure in the same way as NumberCalcsDone
which acts in a more global way!

NewTax cannot access any of the local declarations of PrintPay (for example, TaxPaid,) and vice-
versa. NewTax and PrintPay can be thought of a resting at the same scoping level whereas the
containing program, CalculatePay is at an outer (higher) scoping level (see Figure 17.1).

PrintPay can invoke other internal procedures which are contained by the same outer program unit
(but cannot call itself as it is not recursive, see Section 18.10 for discussion about recursion).

Upon return from PrintPay the value of NumberCalcsDone will have increased by one owing to the
last line of the procedure.

Question 36: Standard Deviation

Write a program which contains an internal function that returns the standard deviation from the
mean of an array of real values. Note that if the mean of a sequence of values (xi; i = 1; n) is denoted
by m then the standard deviation, s, is de�ned as:

s =

rPn

i=1(xi �m)2

n

[Hint: In Fortran 90 SUM(X) is the sum of the elements of X.]

To demonstrate correctness print out the standard deviation of the following numbers (10 of 'em):

5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6

and also for the following 14,

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

17.8.2 Example of Scoping Issues

Consider the following example,

September 2, 1997 University of Liverpool

17.8. Scope 131

PROGRAM Proggie ! scope Proggie

IMPLICIT NONE

REAL :: A, B, C ! scope Proggie

CALL sub(A) ! scope Proggie

CONTAINS

SUBROUTINE Sub(D) ! scope Sub

REAL :: D ! D is dummy (alias for A)

REAL :: C ! local C (diff from Proggie's C)

C = A**3 ! A cannot be changed

D = D**3 + C ! D can be changed

B = C ! B from Proggie gets new value

END SUBROUTINE Sub

SUBROUTINE AnuvvaSub ! scope AnuvvaSub

REAL :: C ! another local C (unrelated)

.....

END SUBROUTINE AnuvvaSub

END PROGRAM Proggie

This demonstrates most of the issues concerning the scope of names in procedures.

If an internal procedure declares an object with the same name as one in the host (containing) program
unit then this new variable supersedes the one from the outer scope for the duration of the procedure,
for example, Sub accesses B from Proggie but supersedes C by declaring its own local object called C.
This C (in Sub) is totally unrelated to the C of Proggie.

Internal procedures may have dummy arguments, however, any object used as an actual argument to
an internal procedure cannot be changed by referring to it by its original name in that procedure; it
must be assigned to using its dummy name. For example, Sub accesses A, known locally as D, by
argument association and is forbidden to assign a value to or modify the availability of A; it must
be altered through its corresponding dummy argument (see P180 of Fortran 90 standard, [1]). The
variable A can still be referenced in Sub as if it possessed the INTENT(IN) attribute (see Section 17.7
for the implications of the INTENT attribute).

A local variable called A could be declared in Sub which would clearly bear no relation to the A which
is argument associated with d. When Sub is exited and control is returned to Proggie, the value that
C had before the call to the subroutine is restored.

The C declared in AnuvvaSub bears no relation to the C from Proggie or the C from Sub.

Question 37: Local Variables

At each of the indicated points in the code, give the status (local, dummy argument, host associated
or unde�ned) and, if appropriate, the values of the variables v1, v2, v3, v4, r and i.

PROGRAM PerOg

IMPLICIT NONE

REAL :: V1,V2

INTEGER :: V3,V4

V1 = 1.0

V2 = 2.0

V3 = 3

V4 = 4

...

Fortran 90 Course Notes File: CourseNotes.ps

132 17. Program Units

!------ Position 1

...

CALL Inte(V1,V3)

...

!------ Position 2

...

CALL Exte(V1,V3)

...

!------ Position 3

...

CONTAINS

SUBROUTINE Inte(r,i)

REAL, INTENT(INOUT) :: r

INTEGER, INTENT(INOUT) :: i

INTEGER :: v2 = 25

...

!------ Position 4

...

r = 24.7

i = 66

v4 = 77

...

END SUBROUTINE Inte

END PROGRAM PerOg

17.9 SAVE Attribute

The SAVE attribute can be:

2 applied to a speci�ed variable. In the following example, NumInvocations is initialised only on
the �rst call (conceptually at program start-up) and then retains its new value between calls,

SUBROUTINE Barmy(arg1,arg2)

INTEGER, SAVE :: NumInvocations = 0

NumInvocations = NumInvocations + 1

2 applied to the whole procedure by appearing on a line on its own. This means that all local
objects are SAVEd.

SUBROUTINE polo(x,y)

IMPLICIT NONE

INTEGER :: mint, neck_jumper

SAVE

REAL :: stick, car

In the above example mint, neck jumper, stick and car all have the SAVE attribute.

Variables with the SAVE attribute are known as static objects and have static storage class.

In fact, the SAVE attribute is given implicitly if an object, which is not a dummy argument or a
PARAMETER, appears in an initialising declaration in a procedure, so

September 2, 1997 University of Liverpool

17.10. Keyword Arguments 133

INTEGER, SAVE :: NumInvocations = 0

is equivalent to

INTEGER :: NumInvocations = 0

however, the former is clearer!

Clearly, the SAVE attribute has no meaning in the main program since when it is exited, the program
has �nished executing.

Objects appearing in COMMON blocks or DATA statements are automatically static.

Question 38: Save Attribute

Write a skeleton procedure that records how many times it has been called.

17.10 Keyword Arguments

Normal argument correspondence is performed by position; the �rst actual argument corresponds to the
�rst dummy argument and so on. Fortran 90 includes a facility to allow actual arguments to be speci�ed
in any order. At the call site actual arguments may be pre�xed by keywords (the dummy argument name
followed by an equals sign) which are used when resolving the argument correspondence. If keywords
are used then the usual positional correspondence of arguments is replaced by keyword correspondence,
for example, consider the following interface description,

SUBROUTINE axis(x0,y0,l,min,max,i)

REAL, INTENT(IN) :: x0, y0, l, min, max

INTEGER, INTENT(IN) :: i

END SUBROUTINE axis

axis can be invoked as follows,

2 using positional argument invocation:

CALL AXIS(0.0,0.0,100.0,0.1,1.0,10)

2 using keyword arguments:

CALL AXIS(0.0,0.0,Max=1.0,Min=0.1,L=100.0,I=10)

As soon as one argument is pre�xed by a keyword then all subsequent arguments (going left to right)
must also be pre�xed.

Note: if an EXTERNAL procedure (see 28) is invoked with keyword arguments then the INTERFACE

must be explicit at the call site.

In summary, keyword arguments:

2 allow actual arguments to be speci�ed in any order.

Fortran 90 Course Notes File: CourseNotes.ps

134 17. Program Units

2 help improve the readability of the program.

2 (when used in conjunction with optional arguments) make it easy to add an extra argument
without the need to modify each and every invocation in the calling code.

2 are the dummy argument names.

Question 39: Keyword Arguments

Write a main program and an internal subroutine that returns, as its �rst argument, the sum of
two real numbers. Invoke this using keyword arguments.

What are the important things to remember when using keyword arguments?

17.11 Optional Arguments

Dummy arguments with the optional attribute can be used to allow default values to be substituted in
place of absent actual arguments. Any argument with the OPTIONAL attribute may be omitted from an
actual argument list but as soon as one argument has been dropped, all subsequent arguments (going
left to right) must be keyword arguments to allow the compiler to resolve the argument correspondence.
Any use of optional arguments requires the interface of the procedure to be explicit; the compiler needs
to know the ordering, type, rank and names of the dummy arguments to work out the correspondence.
The status of an optional argument can be found using the PRESENT intrinsic function.

Many of the intrinsic procedures have optional arguments and keywords can be used for these procedures
in exactly the same way as for user de�ned procedures.

17.11.1 Optional Arguments Example

Consider the following internal subroutine with two optional arguments,

SUBROUTINE SEE(a,b)

IMPLICIT NONE

REAL, INTENT(IN), OPTIONAL :: a

INTEGER, INTENT(IN), OPTIONAL :: b

REAL :: ay; INTEGER :: bee

ay = 1.0; bee = 1

IF(PRESENT(a)) ay = a

IF(PRESENT(b)) bee = b

...

Both a and b have the OPTIONAL attribute so the subroutine, SEE, can be called in the following ways.

CALL SEE()

CALL SEE(1.0,1); CALL SEE(b=1,a=1.0) ! same

CALL SEE(1.0); CALL SEE(a=1.0) ! same

CALL SEE(b=1)

In the above example of procedure calls, the �rst call uses both default values, the second and third
use none and the remaining two both have one missing argument.

September 2, 1997 University of Liverpool

17.11. Optional Arguments 135

Within the procedure it must be possible to check whether OPTIONAL arguments are missing or not,
the PRESENT intrinsic function, which delivers a scalar LOGICAL result, has been designed especially
for this purpose.

If an optional argument is missing then it may not be assigned to, for example, the following is invalid:

IF (.NOT.PRESENT (up)) up = .TRUE. ! WRONG!!!

Question 40: Erroneous Code

What is wrong with the following internal procedure?

SUBROUTINE Mistaken(A,B,C)

REAL, INTENT(INOUT) :: A

REAL, INTENT(OUT), OPTIONAL :: B

REAL, INTENT(IN) :: C

A = 2*C*B

IF(PRESENT(B)) B = 2*A

END

Question 41: Draw a Circle

Write an internal subroutine which draws circles. The routine takes two arguments, the �rst de�nes
the radius of the circle and the second is optional and de�nes the colour by which the circle is shaded.
The default colour for the circle shading should be green. Assume you have two library subroutines
available, one called Circle which takes one REAL argument, (the radius,) and draws the circumfer-
ence and one called Shade Circle which shades it in and takes one character argument that de�nes
the colour as a character string, e.g. \R" for red or \G" for green.

Fortran 90 Course Notes File: CourseNotes.ps

Module 7:
More Procedures

18 Procedures and Array Arguments

There are three types of dummy array argument:

2 explicit-shape | all bounds speci�ed;

INTEGER, DIMENSION(8,8), INTENT(IN) :: explicit_shape

The actual argument that becomes associated with an explicit-shape dummy must conform in
size and shape. An explicit INTERFACE is not required in this case. This method of declaring
dummy arguments is very inexible as only arrays of one �xed size can be passed. This form of
declaration is only very occasionally appropriate.

2 assumed-size | all bounds passed except the last;

INTEGER, INTENT(IN) :: lda ! dummy arg

INTEGER, DIMENSION(lda,*) :: assumed_size

The last bound of an assumed-size array remains unspeci�ed, (it contains a *,) and can adopt
an assumed value. An explicit INTERFACE is not required. This was the Fortran 77 method
of passing arrays but has been totally superseded by the next category.

2 assumed-shape | no bounds speci�ed;

INTEGER, DIMENSION(:,:), INTENT(IN) :: assumed_shape

All bounds can be inherited from the actual argument. The actual array that corresponds to the
dummy must match in type, kind and rank. An explicit INTERFACE must be provided. This type
of argument should always used in preference to assumed-size arrays.

Note: an actual argument can be an ALLOCATABLE array but a dummy argument cannot be |
this means e�ectively that an ALLOCATABLE array must be allocated before being used as an actual
argument.

18.1 Explicit-shape Arrays

A dummy argument that is an explicit-shape array must conform in size and shape to the associated
actual argument; no bound information is passed to the procedure. Consider the following examples,

PROGRAM Main

IMPLICIT NONE

INTEGER, DIMENSION(8,8) :: A1

136

18.2. Assumed-shape Arrays 137

INTEGER, DIMENSION(64) :: A2

INTEGER, DIMENSION(16,32) :: A3

...

CALL subby(A1) ! OK

CALL subby(A2) ! non conforming

CALL subby(A3(::2,::4)) ! OK

CALL subby(RESHAPE(A2,(/8,8/)) ! OK

...

CONTAINS

SUBROUTINE subby(explicit_shape)

IMPLICIT NONE

INTEGER, DIMENSION(8,8) :: explicit_shape

...

END SUBROUTINE subby

END PROGRAM Main

The bottom line is subby can \accept any argument as long as it is an 8� 8 default INTEGER array"!
This is clearly a very inexible approach which generally should not be used.

18.2 Assumed-shape Arrays

Declaring dummy arrays as assumed-shape arrays is the recommended method in Fortran 90. Consider,

PROGRAM TV

IMPLICIT NONE

...

REAL, DIMENSION(40) :: X

REAL, DIMENSION(40,40) :: Y

...

CALL gimlet(X,Y)

CALL gimlet(X(1:39:2),Y(2:4,4:4))

CALL gimlet(X(1:39:2),Y(2:4,4)) ! invalid

...

CONTAINS

SUBROUTINE gimlet(a,b)

REAL, INTENT(IN) :: a(:), b(:,:)

...

END SUBROUTINE gimlet

END PROGRAM TV

An assumed-shape array declaration must have the same type, rank and kind as the actual argument.
The compiler will insist on this.

Note:

2 array sections can be passed so long as they are regular, that is, not de�ned by vector subscripts.
The reason for this is concerned with e�ciency. A vector subscripted section will be non-trivial
to �nd in the memory, it is likely to be widely scattered and would probably need to be copied on
entry to the procedure and then copied back on exit, this will create all sorts of runtime penalties.

2 the actual argument cannot be an assumed-size array. If an actual argument were an assumed-
size array then the bound / extent information of the last dimension would not be known meaning
that the relevant information could not be passed on to a further procedure.

Fortran 90 Course Notes File: CourseNotes.ps

138 18. Procedures and Array Arguments

The third call is invalid because the second section reference has one dimensions whereas the declaration
of the dummy has two.

18.3 Automatic Arrays

Other arrays can depend on dummy arguments, these are called automatic arrays and their size is
determined by the values of dummy arguments. These arrays have local scope and a limited lifespan
and, as they have their size determined by dummy arguments and are created and destroyed with each
invocation of the procedure, cannot have the SAVE attribute (or be initialised). Arrays of this class are
traditionally used for workspace.

Consider,

PROGRAM Main

IMPLICIT NONE

INTEGER :: IX, IY

....

CALL une_bus_riot(IX,2,3)

CALL une_bus_riot(IY,7,2)

CONTAINS

SUBROUTINE une_bus_riot(A,M,N)

INTEGER, INTENT(IN) :: M, N

INTEGER, INTENT(INOUT) :: A(:,:)

REAL :: A1(M,N) ! automatic

REAL :: A2(SIZE(A,1),SIZE(A,2)) ! ditto

REAL :: A3(A(1,1),A(1,1)) ! automatic

...

END SUBROUTINE

END PROGRAM Main

The bound speci�ers of an automatic array can originate from:

2 scalar dummy arguments which are passed as arguments, for example, A1,

2 components of other dummy arguments, for example, A3,

2 characteristics of other dummy arguments (SIZE or LEN intrinsics), for example, A2 will be the
same shape as A,

2 a combination of the above.

There is currently no way to tell whether an automatic array has been created. Typically, if there is
insu�cient memory to allocate an automatic array, the program will ungracefully crash. If this is not
desired then the less intuitive allocatable array should be used.

Question 42: Types of Arrays

In the following internal subroutine, which are the automatic and which are the assumed shape
arrays?

SUBROUTINE Array_Types(A,B,C,D)

September 2, 1997 University of Liverpool

18.4. SAVE Attribute and Arrays 139

INTEGER, INTENT(IN) :: D

REAL, DIMENSION(:,:) :: A,C

REAL, DIMENSION(:) :: B

REAL, DIMENSION(SIZE(A)) :: E

INTEGER, DIMENSION(1:D,1:D) :: F

...

18.4 SAVE Attribute and Arrays

Consider,

SUBROUTINE sub1(dim)

INTEGER, INTENT(IN) :: dim

REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: X

REAL, DIMENSION(dim) :: Y

...

IF (.NOT.ALLOCATED(X)) ALLOCATE(X(20,20))

In the same way that a SAVEd variable persists between procedure calls, the array X will remain allocated
(and its value preserved) between separate invocations.

Dummy arguments or objects which depend on dummy arguments (for example, automatic objects,
see Section 18.3) cannot have the SAVE attribute. This is because the dummy arguments could be
di�erent on each invocation of the procedure. As Y depends on a dummy argument it cannot be given
the SAVE attribute.

18.5 Explicit Length Character Dummy Arguments

This type of dummy argument declaration is comparable to an explicit-length array declaration in that
an explicit-length actual CHARACTER array argument must match the corresponding dummy in kind as
well as in rank. If the actual is a scalar default character variable then the length of the dummy must
be less than or equal to the length of the actual. This approach is clearly inexible and other methods
should really be used, consider:

PROGRAM Main

IMPLICIT NONE

CHARACTER(LEN=10), DIMENSION(10) :: wurd

...

CALL char_example(wurd(3))

CALL char_example(wurd(6:))

CONTAINS

SUBROUTINE char_example(wird,werds)

CHARACTER(LEN=10), INTENT(INOUT) :: wird

CHARACTER(LEN=10), INTENT(INOUT) :: werds(:)

...

END SUBROUTINE char_example

END PROGRAM Main

The example demonstrates that assumed-shape arrays (or indeed, explicit-length arrays if desired) can
still be used for character dummy array arguments.

Fortran 90 Course Notes File: CourseNotes.ps

140 18. Procedures and Array Arguments

18.6 Assumed Length Character Dummy Arguments

This is the recommended method of passing strings in Fortran 90.

CHARACTER dummy arguments can inherit the type-param-value (LEN=) speci�er from the corresponding
actual argument, however, the kind parameter and rank must still match. This form of argument
declaration is much more exible than using explicit-length strings and is analogous to using assumed-
shape dummies in that the length information is `inherited' from the actual argument. An argument
with this form of inherited size is called an assumed-length character dummy:

PROGRAM Main

IMPLICIT NONE

CHARACTER(LEN=10) :: Vera

CHARACTER(LEN=20) :: Hilda

CHARACTER(LEN=30) :: Mavis

...

CALL char_lady(Vera)

CALL char_lady(Hilda)

CALL char_lady(Mavis)

CONTAINS

SUBROUTINE char_lady(word)

CHARACTER(LEN=*), INTENT(IN) :: word

...

PRINT*, "Length of arg is", LEN(word)

...

END SUBROUTINE char_lady

END PROGRAM Main

The actual length of a dummy can be acquired by using the LEN inquiry intrinsic which is comparable
to the SIZE array inquiry intrinsic.

18.7 Array-valued Functions

As well as returning `conventional' scalar results, functions can return pointers, arrays or derived types.
For array valued functions the size of the result can be determined in a fashion which is similar to the
way that automatic arrays are declared.

Consider the following example of an array valued function:

PROGRAM proggie

IMPLICIT NONE

INTEGER, PARAMETER :: m = 6

INTEGER, DIMENSION(M,M) :: im1, im2

...

IM2 = funnie(IM1,1) ! invoke

...

CONTAINS

FUNCTION funnie(ima,scal)

INTEGER, INTENT(IN) :: ima(:,:)

INTEGER, INTENT(IN) :: scal

INTEGER :: funnie(SIZE(ima,1),SIZE(ima,2))

funnie(:,:) = ima(:,:)*scal

September 2, 1997 University of Liverpool

18.8. Character-valued Functions 141

END FUNCTION funnie

END PROGRAM proggie

here the bounds of funnie are inherited from the actual argument and used to determine the size of the
result array; a �xed sized result could have been returned by declaring the result to be an explicit-shape
array but this approach is less exible.

Question 43: Triangular Numbers | Array Valued Function

The numbers 1, 3, 6, 10, 15, 21, ... are called triangular numbers because the number of units

in each can be displayed as a triangular pyramid of blobs. The ith, pi is computed from pi = pi�1+ i.
Write an array valued function which takes one argument (N) and returns a vector of the �rst N
triangular numbers.

Make sure to specify the argument INTENT.

Write a test program to demonstrate the function and print out the sequence where N = 23.

Question 44: Vector Multiplication | Array Valued Function

Write a function Outer that forms the outer product of two vectors. If A and B are vectors
then the outer product is a matrix C such that Cij = Ai �Bj .

Write a test program which accepts two integers giving the size of the A and B vectors, uses the
RANDOM NUMBER function to assign values and then prints the outer product.

18.8 Character-valued Functions

It is clearly useful to have a function that returns a CHARACTER string of a given length. The length of
the result can either be �xed or can be inherited from one of the dummy arguments:

FUNCTION reverse(word)

CHARACTER(LEN=*), INTENT(IN) :: word

CHARACTER(LEN=LEN(word)) :: reverse

INTEGER :: lw

lw = LEN(word)

! reverse characters

DO I = 1,lw

reverse(lw-I+1:lw-I+1) = word(I:I)

END DO

END FUNCTION reverse

In this case the length of the function result is determined automatically to be the same as that assumed
by the dummy argument (word). (Automatic CHARACTER variables could also be created in this way.)
Note that word cannot be used until after its declaration, it is for this reason that, in this case, the
function type cannot appear as a pre�x to the function header.

An explicit interface must always be provided if the function uses a LEN=* length speci�cation.

Fortran 90 Course Notes File: CourseNotes.ps

142 18. Procedures and Array Arguments

18.9 Side E�ect Functions

If, in the function invocation

rezzy = funky1(a,b,c) + funky2(a,b,c)

both funky1 and funky2 modify the value of a and a is used in the calculation of the result, then the
order of execution would be important. Consider the following two internal functions:

INTEGER FUNCTION funky1(a,b,c)

REAL, INIENT(INOUT) :: a

REAL, INIENT(IN) :: b,c

a = a*a

funky1 = a/b

END FUNCTION funky1

and

INTEGER FUNCTION funky2(a,b,c)

REAL, INIENT(INOUT) :: a

REAL, INIENT(IN) :: b,c

a = a*2

funky2 = a/c

END FUNCTION funky2

Notice how both functions modify the value of a, this means that the value of rezzy is wholly dependent
on the (unde�ned) order of execution.

With a=4, b=2 and c=4 the following happens:

2 if funky1 executed �rst then rezzy=8+8=16

� in funky1 a is initially equal to 4,

� upon exit of funky1 a is equal to 16

� upon exit funky1 is equal to 16/2 = 8

� in funky2 a is initially 16

� upon exit of funky2 a is equal to 32

� upon exit funky2 is equal to 32/4 = 8

� this means that rezzy is 8+8 = 16

� and a equals 32

2 if funky2 executed �rst then rezzy=2+32=34

� in funky2 a is initially 4

� upon exit of funky2 a is equal to 8,

� upon exit funky2 is equal to 8/4 = 2

� in funky1 a is initially equal to 8,

September 2, 1997 University of Liverpool

18.10. Recursive Procedures 143

� upon exit of funky1 a is equal to 64,

� upon exit funky1 is equal to 64/2 = 32

� this means that rezzy is 2+32=34

� and a equals 64

A properly constructed function should be such that its result is uniquely determined by the values of
its arguments, and the values of its arguments should be unchanged by any invocation as should any
global entities of the program. Fortran 95 will introduce the PURE keyword which when applied to a
procedure asserts that the routine is `side-e�ect-free' in the sense that it does not change any values
behind the scenes. (For example, a PURE function will not change any global data nor will it change
the values of any of its arguments.) If at all possible all functions should be PURE as this will keep the
code simpler.

18.10 Recursive Procedures

Recursion occurs when procedures call themselves (either directly or indirectly). Any procedural call
chain with a circular component exhibits recursion. Even though recursion is a neat and succinct
technique to express a wide variety of problems, if used incorrectly it may incur certain e�ciency
overheads.

In Fortran 77 recursion had to be simulated by a user de�ned stack and corresponding manipulation
functions, in Fortran 90 it is supported as an explicit feature of the language. For matters of e�ciency,
recursive procedures (SUBROUTINEs and FUNCTIONs) must be explicitly declared using the RECURSIVE
keyword. (See below.)

Declarations of recursive functions have a slightly di�erent syntax to regular declarations, the RESULT
keyword must be used with recursive functions and speci�es a variable name where the result of the
function can be stored. (The RESULT keyword is necessary since it is not possible to use the function
name to return the result. Array valued recursive functions are allowed and sometimes a recursive
function reference would be indistinguishable from an array reference. The function name implicitly
has the same attributes as the result name.)

The fact that a function exhibits recursion must be declared in the header, valid declarations are:

INTEGER RECURSIVE FUNCTION fact(N) RESULT(N_Fact)

or

RECURSIVE INTEGER FUNCTION fact(N) RESULT(N_Fact)

(In the above the INTEGER applieds to both fact and N Fact.)

or,

RECURSIVE FUNCTION fact(N) RESULT(N_Fact)

INTEGER N_Fact

In the last case INTEGER N_Fact implicitly gives a type to fact; it is actually illegal to also specify a
type for fact.

Subroutines are declared using the RECURSIVE SUBROUTINE header.

Fortran 90 Course Notes File: CourseNotes.ps

144 18. Procedures and Array Arguments

18.10.1 Recursive Function Example

The following program calculates the factorial of a number, n!, and uses n! = n(n� 1)!

PROGRAM Mayne

IMPLICIT NONE

PRINT*, fact(12) ! etc

CONTAINS

RECURSIVE FUNCTION fact(N) RESULT(N_Fact)

INTEGER, INTENT(IN) :: N

INTEGER :: N_Fact ! also defines type of fact

IF (N > 0) THEN

N_Fact = N * fact(N-1)

ELSE

N_Fact = 1

END IF

END function FACT

END PROGRAM Mayne

The INTEGER keyword in the function header speci�es the type for both fact and N fact.

The recursive function repeatedly calls itself, on each call the values of the argument is reduced by one
and the function called again. Recursion continues until the argument is zero, when this happens the
recursion begins to unwind and the result is calculated.

4! is evaluated as follows,

1. 4! is 4� 3!, so calculate 3! then multiply by 4,

2. 3! is 3� 2!, need to calculate 2!,

3. 2! is 2� 1!, 1! is 1� 0! and 0! = 1

4. can now work back up the calculation and �ll in the missing values.

18.10.2 Recursive Subroutine Example

Subroutines can also be recursive,

RECURSIVE SUBROUTINE Factorial(N, Result)

INTEGER, INTENT(IN) :: N

INTEGER, INTENT(INOUT) :: Result

IF (N > 0) THEN

CALL Factorial(N-1,Result)

Result = Result * N

ELSE

Result = 1

END IF

END SUBROUTINE Factorial

September 2, 1997 University of Liverpool

145

Question 45: Maggot/Onion Recursive Procedure Conundrum

An onion with an unknown number of layers contains a maggot at an unknown layer. Write a
recursive function which will determine the depth of the maggot using the probability of 0.1 of a
maggot being at a particular layer and a random number generator.

19 Object Orientation

19.1 Stack Simulation Example

Push(6) 6

12 6

2 Push(1)Push(2)

Pop Pop Pop

1 6

2

2

6

1 6 2

Figure 23: How a Stack Works

A stack can be thought of as a pile of things that can only be accessed from the top. You can put
something on the top of the pile: a Push action, and you can grab things o� the top of the pile: a Pop
action.

The diagrams show the conventional visualisation of a stack. As elements are pushed onto the top of
the stack, the previous top elements get pushed down, as things are popped o� the top the lower stack
entries move towards the top.

Fortran 90 Course Notes File: CourseNotes.ps

146 19. Object Orientation

Pos Pos

Pos

2

2 6 2 6 1

Push(6)Push(2)

Push(1)

1 62 6 1 2 6

2 2

Pop Pop

Pos Pos

PosPos

Pop

Pos

Figure 24: How a Stack Could be Implemented

These diagrams show how we will simulate the stack using an array with a pointer to indicate where
the top of the stack is. As elements are pushed onto the stack they are stored in the array and the `top'
position moves right; as things are popped o�, the top of the stack moves left. From this description
it can be seen that we need three objects to simulate a stack:

2 a current position marker,

2 the array to hold the data,

2 the maximum size of the stack (array).

This data is needed by both the Push and Pop procedures, and should be made global.

19.1.1 Stack Example Program

For example, the following de�nes a very simple 100 element integer stack,

PROGRAM stack

IMPLICIT NONE

INTEGER, PARAMETER :: stack_size = 100

INTEGER, SAVE :: store(stack_size), pos = 0

....

! stuff that uses stack

September 2, 1997 University of Liverpool

19.2. Reusability | Modules 147

....

CONTAINS

SUBROUTINE push(i)

INTEGER, INTENT(IN) :: i

IF (pos < stack_size) THEN

pos = pos + 1; store(pos) = i

ELSE

STOP 'Stack Full error'

END IF

END SUBROUTINE push

SUBROUTINE pop(i)

INTEGER, INTENT(OUT) :: i

IF (pos > 0) THEN

i = store(pos); pos = pos - 1

ELSE

STOP 'Stack Empty error'

END IF

END SUBROUTINE pop

END PROGRAM stack

store and pos do not really need the SAVE attribute as here they are declared in the main program
and do not go out of scope. The declaration of stack size as a PARAMETER allows the stack size to
be easily modi�ed; it does not need the SAVE attribute (because it is a constant).

The main program can now call push and pop which simulate adding to and removing from a 100
element INTEGER stack. The current state of the stack, that is, the number of elements on the sack
and the values of each location, are stored as global data.

Actually this is not the ultimate way of simulating a stack but demonstrates global data. (See later
for an improvement.)

19.2 Reusability | Modules

A stack is a useful data structure which can be applied to many di�erent situations. In its current
state, if we wished to use the stack with a di�erent program then it would be necessary to retype or
cut and paste the existing text into this other program. There is a far better way to enable the code
to be used elsewhere and that is to convert the existing PROGRAM to a MODULE. This technique is called
encapsulation:

MODULE Stack

IMPLICIT NONE

INTEGER, PARAMETER :: stack_size = 100

INTEGER, SAVE :: store(stack_size), pos = 0

CONTAINS

SUBROUTINE push(i)

.....

END SUBROUTINE push

SUBROUTINE pop(i)

......

END SUBROUTINE pop

END MODULE Stack

Fortran 90 Course Notes File: CourseNotes.ps

148 19. Object Orientation

In the above module, the data structures and access functions that relate to the stack have been
encapsulated in a MODULE. It is now possible for any other program units that need to utilise a stack
to attach this module (with a USE statement) and access its functionality.

PROGRAM StackUser

USE Stack ! attaches module

IMPLICIT NONE

....

CALL Push(14); CALL Push(21);

CALL Pop(i); CALL Pop(j)

....

END PROGRAM StackUser

All entities declared in Stack, for example push and pop, are now available to StackUser. This form
of software reusability is a cornerstone of object oriented programming; in this case the module is like
a (C++ or Java) class as it contains the de�nition of an object (the stack) and all the access functions
used to manipulate it (push and pop).

A point of note is that the SAVE statement, in the module, behaves as usual. The variables store and
pos are given the SAVE attribute because objects in a module only exist when the module is being used.
In the StackUser program, the module is in use for the lifetime of the program | it has the scope
of the program. However, if the module was not used in a main program but was instead attached
to a procedure, then when that procedure is exited and control passed back to the main program
(which does not contain a USE statement,) the module will go out of scope and any non-static objects
(non-SAVEd objects) will disappear from memory. The next time the module is brought back into
scope, a new instance of these variables will be created, however, any values held by non-static objects
will be lost. This is the same principle as when the SAVE attribute is applied to objects declared in a
procedure.

Within a module, functions and subroutines are called module procedures and follow slightly di�erent
rules from regular procedures. The main di�erence is that they may contain internal procedures (in
the same way as PROGRAMs),

All modules must be compiled before any program unit that uses the module.

Modules can also be used to replace the functionality of a COMMON block. COMMON blocks have long
been regarded as an unsafe feature of Fortran. In Fortran 77 they were the only way to achieve
global storage. In Fortran 90 global storage can be achieved by:

2 declaring the required global objects within a module.

2 giving these objects the SAVE attribute,

2 attaching the module (via USE) to each program unit which requires access to the global data.
(Wherever the MODULE is used, the global objects are visible.)

For example, to declare X, Y and Z as global, declared them in a module:

MODULE Globby

REAL, SAVE :: X, Y, Z

END MODULE Globby

and use the module

September 2, 1997 University of Liverpool

19.2. Reusability | Modules 149

PROGRAM YewZing

USE Globby

IMPLICIT NONE

...

END PROGRAM YewZing

If the use of a COMMON block is absolutely essential then a single instance of it should be placed in a
MODULE and then used. (A COMMON block names a speci�c area of memory and splits it up into areas
that can be referred to as scalar or array objects, for a single COMMON block it is possible to specify
a di�erent partition of data objects each time the block is accessed, each partition can be referred
to by any type, in other words the storage can be automatically retyped and repartitioned with gay
abandon | this leads to all sorts of insecurities. Putting the block in a MODULE removes any possibility
of the above type of misuse.) This will have the e�ect of ensuring that each time the COMMON block
is accessed it will be laid out in exactly the same way and mimics the techniques of placing COMMON

blocks in INCLUDE �les (a common Fortran 77 technique).

Question 46: Encapsulation

De�ne a module called Simple Stats which contains encapsulated functions for calculating the
mean and standard deviation of an arbitrary length REAL vector. The functions should have the fol-
lowing interfaces:

REAL FUNCTION mean(vec)

REAL, INTENT(IN), DIMENSION(:) :: vec

END FUNCTION mean

REAL FUNCTION Std_Dev(vec)

REAL, INTENT(IN), DIMENSION(:) :: vec

END FUNCTION Std_Dev

[Hint: In Fortran 90, SIZE(X) gives the number of elements in the array X.]

You may like to utilise your earlier code as a basis for this exercise.

Add some more code in the module which records how many times each statistical function is called
during the lifetime of a program. Record these numbers in the variables: mean use and std dev use.

Demonstrate the use of this module in a test program; in one execution of the program give the mean
and standard deviation of the following sequences of numbers:

5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6

and

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

plus two other sequences.

Print out the values of mean use and std dev use for this run of the program.

Fortran 90 Course Notes File: CourseNotes.ps

150 19. Object Orientation

Question 47: Complex Arithmetic | Modules

A complex number with solely integer components can be represented as a two element INTEGER
array. Write a MODULE called Integer Complex Arithmetic which contains 4 FUNCTIONs each ac-
cepting two integer complex number `operands' and delivering the result of addition, subtraction,
multiplication and division. Where appropriate Fortran 90 integer division rules should be followed.
The following rules for complex arithmetic may be useful,

(a+ bi) + (x+ yi) = (a+ x) + (b+ y)i

and,

(a+ bi)� (x+ yi) = (a� x) + (b� y)i

and,

(a+ bi)� (x + yi) = (a� x� b� y) + (a� y + b� x)i

and,

(a+ bi)

(x+ yi)
=

(a+ bi)� (x� yi)

x2 + y2

Also write a procedure to accept one integer complex number and one non-negative integral exponent
which delivers the result of **.

Note, for n � 0,

(a+ bi)n = 1� (a+ bi)� � � � � (a+ bi)| {z }
n

19.3 Restricting Visibility

Data hiding has been introduced to Fortran 90 as a safety feature, it prevents anybody using a module
from changing certain module objects such as those used for `housekeeping'. Restricting the visibility
of purely internal details also allows the module to be updated / modi�ed without the user being aware.

For example, the following lines could be added to the stack example,

PRIVATE :: pos, store, stack_size ! hidden

PUBLIC :: pop, push ! not hidden

This would ensure that store, stack size and pos are hidden from the user whereas, pop and push

are not. This makes the module much safer as the user is unable to `accidentally' modify the value of
pos (the index of the top of the stack) or modify the contents of store (the data structure holding
the contents of the stack).

The default accessibility for an arbitrary module is PUBLIC which means that if accessibility is not
speci�ced a user will have access to all entities. This can be reversed by using a PRIVATE statement
directly after the IMPLICIT NONE statement.

September 2, 1997 University of Liverpool

19.4. The USE Renames Facility 151

MODULE Blimp

IMPLICIT NONE

PRIVATE

! unlessed specified otherwise all

! other entities are PRIVATE

.....

END MODULE Blimp

There is also an attributed form of the visibility speci�ers.

In our example we can equivalently use statements and attributes;

PUBLIC ! set default visibility

INTEGER, PRIVATE, SAVE :: store(stack_size), pos

INTEGER, PRIVATE, PARAMETER :: stack_size = 100

Which means in the main PROGRAM:

CALL Push(21); CALL Pop(i)

is perfectly OK but

pos = 22; store(pos) = 99

would be agged by the compiler as an error.

Access to the stack is now only possible via the access functions pop and push.

Question 48: Visibility Attributes

Add visibility attributes to your Simple Statsmodule so that the usage statistics variables (mean use

and std dev use) cannot be accessed directly but must be viewed by calling either of the access sub-
routines Print Mean Use or Print Std Dev Use. In other words,

CALL Print_Mean_Use

CALL Print_Std_Dev_Use

should print out the values of mean use and std dev use.

What advantage does this approach hold?

19.4 The USE Renames Facility

The USE statement names a module whose public de�nitions are to be made accessible. It has the
following form:

USE <module-name> [,< new-name> => < use-name>...]

Fortran 90 Course Notes File: CourseNotes.ps

152 20. Modules

If a local entity has the same name as an object in the module, then the module object can be renamed,
(as many renames as desired can be made in one USE statement, they are just supplied as a comma
separated list),

USE Stack, IntegerPop => Pop

Here the module object Pop is renamed to IntegerPop when used locally. This renaming facility is
essential otherwise user programs would often require rewriting owing to name clashes, in this way the
renaming can be done by the compiler. Renaming should not be used unless absolutely necessary as
it can add a certain amount of confusion to the program. It is only permissible to rename an object
once in a particular scoping unit.

19.5 USE ONLY Statement

It is possible to restrict the availability of objects declared in a module made visible by use association
by using the ONLY clause of the USE statement. In this way name clashes can be avoided by only using
those objects which are necessary. It has the following form:

USE <module-name> [ONLY:<only-list>...]

The < only-list> can also contain renames (=>).

This method can be used as an alternative to renaming module entities, for example, a situation may
arise where a user wishes to use 1 or 2 objects from a module but discovers that if the module is
accessed by use association there are a couple of hundred name clashes. The simplest solution to this
is to only allow the 1 or 2 objects to be seen by his / her program. These 1 or 2 objects can be renamed
if desired.

For example,

USE Stack, ONLY:Pos, IntegerPop => Pop

Only Pos and Pop are made accessible and the latter is renamed.

The USE statement, with its renaming and restrictive access facilities, gives greater user control enabling
two modules with similar names to be accessed by the same program with only minor inconvenience.
In addition, the ONLY clause gives the compiler the option of just including the object code associated
with the entities speci�ed instead of the code for the whole module. This has the potential to make
the executable code smaller and faster.

Question 49: USE Renames Statement

Write a USE statement that accesses the Simple Stats module. This USE statement should specify
that only the procedures Mean and Print Mean Use are attached and that they are renamed to be
Average and Num Times Average Called!

20 Modules

Modules are new to Fortran 90. They have a very wide range of applications and their use should be
encouraged. They allow the user to write object based code which is generally accepted to be more

September 2, 1997 University of Liverpool

20.1. Modules | General Form 153

reliable, reusable and easier the write than regular code.

A MODULE is a program unit whose functionality can be exploited by any other program unit which
attaches it (via the USE statement). A module can contain the following:

2 global object declarations;

Modules should be used in place of Fortran 77 COMMON and INCLUDE statements. If global
data is required, for example, to cut down on argument passing, then objects declared in a module
can be made visible wherever desired by simply attaching the module. Objects in a module can
be given a static storage class so will retain their values between uses.

Sets of variable declarations which are not globally visible can also be placed in a module and used
at various places in the code; this mimics the functionality of the INCLUDE statement. (INCLUDE
was an extension to Fortran 77 and literally included a speci�ed �le at the appropriate place
in the code.)

2 interface declarations;

It is sometimes advantageous to package INTERFACE de�nitions into a module and then use the
module whenever an explicit interface is needed. This should be done in conjunction with the
ONLY clause but is only really useful when module procedures cannot be used.

2 procedure declarations;

Procedures can be encapsulated into a module which will make them visible to any program unit
which uses the module. This approach has the advantage that all the module procedures, and
hence their interfaces, are explicit within the module so there will be no need for any INTERFACE
blocks to be written.

2 controlled object accessibility;

Variables, procedures and operator declarations can have their visibility controlled by access
statements within the module. It is possible for speci�ed objects to be visible only inside the
module. This technique is often used to provide security against a user meddling with the values
of module objects which are purely internal to the module.

2 packages of whole sets of facilities;

Derived types, operators, procedures and generic interfaces can be de�ned and packaged to
provide simple object oriented capabilities.

2 semantic extension;

A semantic extension module is a collection of user-de�ned type declarations, access routines
and overloaded operators and intrinsics which, when attached to a program unit, allow the user
to use the functionality as if it were part of the language.

20.1 Modules | General Form

The syntax of a module program unit is:

MODULE <module name>
< declarations and speci�cations statements>

[CONTAINS
< de�nitions of module procedures>]

END [MODULE [<module name>]]

Fortran 90 Course Notes File: CourseNotes.ps

154 20. Modules

<module name> is the name that appears in the USE statement, it is not necessarily the same as the
�lename.

SUBROUTINE Sub(..)

CONTAINS

END SUBROUTINE Sub

FUNCTION Funky(..)

! Executable stmts

CONTAINS

END FUNCTION Funky

CONTAINS

SUBROUTINE Int1(..)

MODULE Nodule

END MODULE Nodule

! TYPE Definitions

! Global data

! etc ..

! etc.

! Executable stmts

END SUBROUTINE Int2

END SUBROUTINE Int1

! etc.

SUBROUTINE Intn(..)

n

! etc

 ! ..

Figure 25: Schematic Diagram of a Module Program Unit

Entities of other modules can be accessed by a USE statement as the �rst statement in the speci�cation
part. This is called use-association.

Non-circular dependent de�nition chains are allowed (one module USEs another which USEs another
and so on) providing a partial-inheritance mechanism.

A module may include the following declarations and speci�cations:

September 2, 1997 University of Liverpool

20.1. Modules | General Form 155

2 USE statements (a module inherit the environment of another module either fully or partially by
using USE .. ONLY clause,)

2 object de�nitions, (any declarations and de�nitions that could appear in a main program can also
be found here),

2 object initialisations,

2 type de�nitions,

2 accessibility statements,

2 interface declarations (of external procedures);

2 MODULE PROCEDURE declarations (procedures that appear after the CONTAINS speci�er). Module
procedures are written in exactly the same way as regular (external) procedures and may also
contain internal procedures. They can be given visibility attributes so may be private to the
module or usable by any program unit that employs the module.

Fortran 90 Course Notes File: CourseNotes.ps

Module 8:
Pointers and Derived Types

21 Pointers and Targets

It is often useful to have variables where the space referenced by the variable can be changed as well
as the values stored in that space. This is the functionality that a pointer variable provides. The space
to which a pointer variable points is called its target; pointer variables do not hold data, they point to
scalar or array variables which themselves may contain data. Pointers are used in much the same way
as non-pointer variables with added functionality and a small number of extra constraints. In many
situations the pointer has the potential to use less space than the target.

Target

Pointer Target

Target

Figure 26: The Relationship Between a Pointer and its Target

Pointers are very useful as they can be used to access variables indirectly (aliasing) and provide a more
exible alternative to ALLOCATABLE arrays. Pointers may also be used in conjunction with user-de�ned
types to create dynamic data structures such as linked lists and trees. These structures are useful,
for example, in situations where data is being created and destroyed dynamically and it cannot be
predicted in advance how this will occur.

Fortran 90 pointers are unlike C pointers as they are much less exible and more highly optimised. The
need for e�ciency has implications in the way that they are used, declared and what they can point to.
Pointers are strongly typed in the sense that a pointer to a REAL scalar target may not point to any
other data type (INTEGER, LOGICAL etc) nor may it point to an array. A pointer to a one dimensional
array may not point to an array of a di�erent dimensionality (unless the array has been sectioned down
to the required rank). In order to further enhance optimisation, anything that is to be pointed at must
have the TARGET attribute (either explicitly or implicitly). In its lifetime a pointer can be made to point
at various di�erent targets, however, they all must be correctly attributed and be of the correct type,
kind and rank. At any given time a given pointer may only have one target but a given target may be
pointed to by more than one pointer.

The use of pointers may have a detrimental e�ect on the performance of code but can be used to
actually enhance e�ciency. For example, when sorting a set of long database records on one �eld, it is
much more e�cient to declare an array of pointers (one for each database entry) to de�ne the sorted set
than to physically move (copy) large database records. Pointer variables are typically small (probably
smaller than the storage required for one default integer variable) so can be used to conserve memory.
Moving arrays about in memory will involve a large and costly copy operation whereas retargeting a
couple of pointers is a far less expensive solution.

156

21.1. Pointer Status 157

In general, a reference to the pointer will be a reference to the target. Pointers are automatically
dereferenced, in other words, when the pointer is referenced it is actually the value of the space that
the pointer references that is used.

21.1 Pointer Status

Pointer variables have 3 states:

2 unde�ned | the initial status of a pointer.

2 associated | the pointer has a target.

2 disassociated | the pointer has no target but is de�ned.

Visualisation,

Pointer

Associated

Disassociated

Undefined

Target

Null

???????

Figure 27: The Three States of a Pointer

There is a scalar LOGICAL intrinsic function, ASSOCIATED, which returns the (association) status of a
pointer. The function returns .TRUE. if the pointer is associated and .FALSE. if it is disassociated;
the result is unde�ned if the pointer status is itself unde�ned.

As good practise one should always use the NULLIFY statement to disassociate pointers before any
use. Since an unassociated pointer has an unde�ned status it should not be referenced at all, not even
in an ASSOCIATED function call. Fortran 95 will allow pointers to be nulli�ed on declaration.

21.2 Pointer Declaration

A POINTER is a variable declared with the POINTER attribute, it has static type, kind and rank deter-
mined by its declaration:

REAL, POINTER :: Ptor

REAL, DIMENSION(:,:), POINTER :: Ptoa

The �rst declaration speci�es that the name Ptor is a pointer to a scalar REAL target; the second
speci�es that Ptoa is a pointer to a rank 2 array of reals. Pointers cannot point to literals.

The above raises three interesting points:

Fortran 90 Course Notes File: CourseNotes.ps

158 21. Pointers and Targets

2 the declaration �xes the type, kind and rank of any possible target.

2 pointers to arrays are always declared with deferred-shape array speci�cations.

2 the rank of a target is �xed but the shape may vary.

A variable with the POINTER attribute may not possess the ALLOCATABLE or PARAMETER attributes.

21.3 Target Declaration

If ordinary variables are to become targets of a pointer they must be declared as such and be given the
TARGET attribute.

REAL, TARGET :: x, y

REAL, DIMENSION(5,3), TARGET :: a, b

REAL, DIMENSION(3,5), TARGET :: c

With these declarations (and those from Section 21.2):

2 x or y may become associated with Ptor;

2 a, b or c may become associated with Ptoa.

As Fortran has always been associated with e�ciency it was felt that pointers should be implemented
as e�ciently as possible and to this end the TARGET attribute was included. The Fortran 90 standard,
[1], says:

\The TARGET attribute ... is de�ned solely [primarily] for optimization purposes. It
allows the processor to assume that any nonpointer object not explicitly declared as
a target may be referred to only by way of its original declared name." Fortran 90
Standard.

The above text is to be changed as indicated in Fortran 95 as the word solely is felt to be misleading.
The TARGET attribute is also used at procedure boundaries to say that one of the arguments is a TARGET
which clearly means that the TARGET attribute has uses other than for optimisation.

21.4 Pointer Manipulation

Pointers have two separate forms of assignment which should not be confused as they have very
di�erent results.

2 =>, pointer assignment

� is a form of aliasing (referring to an object by a di�erent name), the pointer and its target
refer to the same space,

� can take place between a pointer variable and a target variable, or between two pointer
variables,

2 =, `normal' assignment

September 2, 1997 University of Liverpool

21.5. Pointer Assignment 159

� can take place between a pointer variable and an object of the appropriate type, kind and
rank, the object on the RHS does not need to have the TARGET attribute. (The TARGET

attribute is not needed because the LHS of the assignment is simply an alias for a `regular'
object and the RHS is not being pointed at.) When an alias is used on the LHS of an
assignment statement, the reference can be thought of as being a reference to the aliased
object.

� sets the space pointed at to the speci�ed value. If a particular space is pointed at by a
number of pointers then changing the values in the space obviously changes the dereferenced
value of all associated pointers.

In summary, pointer assignment makes the pointer and the variable reference the same space whilst
normal assignment alters the value contained in that space.

21.5 Pointer Assignment

Consider,

Ptor => y

Ptoa => b

The �rst statement associates a pointer Ptor with a target y, (Ptor is made an alias for y,) and the
second, associates the pointer Ptoa with b, (Ptoa is an alias for b). From now on now Ptor and y,
and Ptoa and b can be used interchangeably in statements since they both reference the same entity.
If the value of y or b is changed, the value of Ptor or Ptoa also changes but the location of space
pointed at does not.

If Ptor2 is also a pointer to a scalar real then the pointer assignment,

Ptor2 => Ptor

makes Ptor2 also point to y meaning that y has two aliases. The above statement has exactly the
same e�ect as:

Ptor2 => y

21.5.1 Pointer Assignment Example

Consider,

x = 3.14159

Ptor => y

Ptor = x ! y = x

Fortran 90 Course Notes File: CourseNotes.ps

160 21. Pointers and Targets

3.14159

3.14159 y

x

Ptor

Figure 28: Visualisation of Pointer Assignment

The three statements have the following e�ect,

1. x = 3.14159 is a regular assignment, x receives a value.

2. Ptor => y alias's y to be Ptor, y does not necessarily have a meaningful value.

3. Ptor = x sets the space pointed at by Ptor, (i.e., y) to the value of x (3.14159), (any assign-
ments / references to Ptor are really assignments / references to y).

At the end of the above sequence of statements x and Ptor have the same value, this is because Ptor
is an alias for y so the last statement e�ectively sets y = 3.14159. If the value of x is subsequently
changed, the value of Ptor and y do not | x is not being pointed at by anything so changing its
value has no e�ect. However,

Ptor = 5.0

means that, because of aliasing, y would also take the value 5.0

21.6 Association with Arrays

An array pointer may be associated with the whole of a target or a regular section of a target as long
as the section has the correct rank (and type and kind). (A regular section is an array section that can
be de�ned by a linear function; a subscript-triplet de�nes a regular section.)

An array pointer cannot be associated with a non-regular (vector subscripted) array section.

Assuming the same declarations as before:

2 this is valid:

Ptoa => a(3:5,::2)

This pointer assignment statement aliases the speci�ed section to the name Ptoa, for exam-
ple, Ptoa(1,1) refers to element a(3,1); Ptoa(2,2) refers to to element a(5,3) and so on.
SIZE(Ptoa) gives 6 and SHAPE(Ptoa) gives (/ 2, 2 /).

2 this is valid:

Ptoa => a(1:1,2:2)

September 2, 1997 University of Liverpool

21.6. Association with Arrays 161

This means alias Ptoa to a 1�1 2D array. Note that the section speci�ers uphold the rank even
though they only specify one element.

2 these are invalid | the targets have the wrong rank:

Ptoa => a(1:1,2)

Ptoa => a(1,2)

Ptoa => a(1,2:2)

The ranks of the targets must be 2.

2 this is invalid as the target is not a regular section but is de�ned by a vector subscript:

v = (/2,3,1,2/)

Ptoa => a(v,v)

Even if the vector subscript v did de�ne a regular section, the statement would still be invalid as
the sectioning is speci�ed by a vector subscript.

For example,

Ptoa

A(5,3)

Ptoa(2,2)

A(3,3)

Ptoa(1,2)

A

Ptoa(1,1)

A(3,1)

Ptoa(2,1)

A(5,1)

Figure 29: A Pointer to a Section of an Array

Ptoa => a(3::2,::2)

Here the top left subsection element can be referred to through TWO names

2 A(3,1)

2 Ptoa(1,1)

Fortran 90 Course Notes File: CourseNotes.ps

162 21. Pointers and Targets

21.7 Dynamic Targets

Targets for pointers can also be created dynamically by allocation. As well as allotting space for
allocatable arrays, the ALLOCATE statement can reserve space to be the target of a pointer, in this case
the pointer is not so much an alias of another variable, it is more a reference to an unnamed part of
the heap storage.

ALLOCATE(Ptor,STAT=ierr)

ALLOCATE(Ptoa(n*n,2*k-1), STAT=ierr)

The above statements allocate new space, the �rst for a single real and the second for a rank 2 real
array. These objects are automatically made the targets of Ptor and Ptoa respectively.

In ALLOCATE statements, the status speci�er STAT= should always be used, recall that a zero value
means that the allocate request was successful and a positive value means that there was an error
and the allocation did not take place. There should only be one object per ALLOCATE statement so if
the allocation goes wrong it is easy to tell which object is causing the problem. In a procedure, any
allocated space should be deallocated before the procedure is exited otherwise the space will become
inaccessible and will be wasted. Allocated space that is to be retained between procedure calls should
have the SAVE attribute.

It is not an error to allocate an array pointer that is already associated. If an array pointer is already
allocated and is then allocated again, links with the �rst target are automatically broken and a new
target installed in its place. Care must be taken to ensure that the original target is still accessible by
another pointer otherwise its storage will be lost for the duration of the program.

21.8 Automatic Pointer Attributing

All pointer variables implicitly have the TARGET attribute. This means that any pointer can be associ-
ated with any other pointer as shown below:

Ptoa => A(3::2,1::2)

Ptor => Ptoa(2,1)

This would associate the element (2,1) of the target of Ptoa with Ptor.

Ptoa

Ptor

A(5,1)

Figure 30: Automatic Attributing of Arrays

Here the bottom left subsection element can be referred to through THREE names:

September 2, 1997 University of Liverpool

21.8. Automatic Pointer Attributing 163

Ptoa

Ptor

A(5,1)

Figure 31: Automatic Attribution of a Pointer

2 Ptor

2 A(5,1)

2 Ptoa(2,1)

This form of aliasing has advantages in both convenience of expression and e�ciency. For example,
if a particular element was being used frequently within a nested loop, the calculation of the index of
particular element need only be done once. Subsequent references to the element can then be made
through the scalar pointer.

Question 50: Pointers and Assignment

Given the following declarations,

IMPLICIT NONE

REAL, POINTER :: a, b(:), c(:,:)

REAL, TARGET :: e, f(100), g(100,100), h(100,100,1)

REAL :: k(100,100)

INTEGER, POINTER :: o(:,:)

INTEGER, TARGET :: r(100), s(100,100)

INTEGER :: v(100)

7 of the lines below are incorrect. Which are they and why are they wrong?

a => h(1,1,:)

b => h(20,:,1:1)

o => s

c => g(100,100)

a => k(20,20)

a => e

b => v

c => g; b => c(32,40:42)

e => f(20)

a => f(5)

c => g(100:100,100:100)

b => REAL(r)

Fortran 90 Course Notes File: CourseNotes.ps

164 21. Pointers and Targets

21.9 Association Status

The status of a de�ned pointer may be tested by a scalar LOGICAL intrinsic function:

ASSOCIATED(Ptoa)

If Ptoa is de�ned and associated then this will return .TRUE.; if it is de�ned and disassociated it will
return .FALSE.. If it is unde�ned the result is also unde�ned | the Edinburgh and NAg compilers
give opposite results if ASSOCIATED is given an unde�ned pointer argument | neither give an error.

The target of a de�ned pointer may also be tested:

ASSOCIATED(Ptoa, arr)

If Ptoa is de�ned and currently associated with the speci�c target, arr, then the function will return
.TRUE., otherwise if it will return .FALSE..

The ASSOCIATED intrinsic is also useful to avoid deallocation errors:

IF(ASSOCIATED(Ptoa)) DEALLOCATE(Ptoa, STAT=ierr)

21.10 Pointer Disassociation

Pointers can be disassociated with their targets by:

2 nulli�cation

NULLIFY(Ptor)

The NULLIFY statement breaks the connection of its pointer argument with its target (if any)
and leaves the pointer in a disassociated state, however, it does not deallocate the targets
storage. This space will be inaccessible until the program terminates unless it is pointed to by
at least one more pointer. A list of pointers to nullify may be speci�ed.

Immediately after their appearance in a declaration statement, non-dummy argument pointers
are in an unde�ned state; as a matter of course they should be nulli�ed to bring them into a
disassociated state. Using an unde�ned pointer as an argument to the ASSOCIATED statement
is an error because an unde�ned pointer cannot be referenced anywhere!

2 deallocation

DEALLOCATE(Ptoa, STAT=ierr)

The DEALLOCATE statement breaks the connection between the pointer and its target and returns
the space to the heap storage for re-use. The statement should be used when the target space
is �nished with, for example, at the end of a procedure. The target is left in a disassociated (or
nulli�ed) state.

The STAT= �eld should always be used to report on the success / failure of the deallocation
request; as usual, zero indicates success and a positive value means failure. It is possible to
deallocate ALLOCATABLE arrays and POINTER variables in the same statement, however, it is
recommended that there only be one object per DEALLOCATE statement in case there is an error.
It is an error to deallocate anything that has not been �rst allocated or that is in a disassociated
or unde�ned state and it is also an error to deallocate an object that has more than one pointer
associated with it; any other pointers should �rst be nulli�ed before deallocation is performed.

September 2, 1997 University of Liverpool

21.11. Pointers to Arrays vs. Allocatable Arrays 165

21.11 Pointers to Arrays vs. Allocatable Arrays

In the general case ALLOCATABLE arrays should be used in preference to POINTER arrays in order to
facilitate optimisation. Arrays which are the target of pointers may be referred to by a number of
di�erent names (alias's) whereas ALLOCATABLE arrays may only have one name. Clearly, if aliasing is
desired then POINTERs and TARGETs must be used.

There are two main restrictions imposed upon allocatable arrays which do not apply to POINTER arrays:

2 unallocated ALLOCATABLE arrays cannot be passed as actual arguments to procedures,

2 ALLOCATABLE arrays cannot be used as components of derived types.

In summary, ALLOCATABLE arrays are more e�cient and POINTER arrays are more exible.

An interesting discussion about pointer e�ciency can be found here

http://euclid.math.fsu.edu/ pbismu/RESEARCH/SOFTWARE/POINTER/pointer.html

21.12 Practical Use of Pointers

Pointers can be of great use in iterative problems. Iterative methods:

2 make guess at required solution;

2 use guess as input to equation to produce better approximation;

2 use new approximation to obtain better approximation;

2 repeat until degree of accuracy is obtained;

As an example, let us �nd the square root of a number by iteration:

Xn =
Xn�1 + Y=Xn�1

2

(A stable and rapidly convergent algorithm which produces acceptable value for square root in small
number of iterations.)

The following iterative code segment could be found in a solution,

REAL :: Y, tol=1.0E-4

REAL :: prev_app, next_app

prev_app = 1.0 ! set initial approx

DO ! calculate next approx

next_app = (prev_app + Y/prev_app)/2.0

IF (ABS((next_app-prev_app)/next_app) < tol) THEN

EXIT

ELSE

prev_app = next_app

END IF

Fortran 90 Course Notes File: CourseNotes.ps

166 21. Pointers and Targets

END DO

! next_app now contains the required result

...

This structure is typical of such iterative processes, however, in general the objects involved are not
simple real variables and the update process is not just a simple arithmetic assignment. It is frequently
the case that the objects which hold the approximations are large arrays and the cost of the copy
operation, moving the result of one iteration to become the input to the next, is a signi�cant proportion
of the total cost of an iteration. In such cases it is much more e�cient to use pointers to avoid having
to do the copying operations.

For array problems a more e�cient solution can be constructed which uses pointers:

PROGRAM Solve

IMPLICIT NONE

REAL :: tol=1.0E-4

REAL, DIMENSION(1000,1000), TARGET :: approx1, approx2

REAL, DIMENSION(:,:), POINTER :: prev_approx, next_approx, swap

prev_approx => approx1

next_approx => approx2

prev_approx => initial_approximation(.....)

DO

next_approx = iteration_function_of(prev_approx)

IF (ABS(MAXVAL(next_approx-prev_approx)) < tol) EXIT

swap => prev_approx

prev_approx => next_approx

next_approx => swap

END DO

CONTAINS

FUNCTION iteration_function_of(in)

REAL, DIMENSION(:,:) :: in

REAL, DIMENSION(SIZE(in,1),SIZE(in,2)) :: iteration_function_of

......

END FUNCTION

END PROGRAM Solve

The DO loop contains the iteration which gradually moves towards the solution. iteration function of

is an array valued function uses the values of prev approx and improves them to be closer to the
solution. Convergence is tested by examining the di�erence between the two most recent approxima-
tions. The worst value (chosen by MAXVAL) is used. If this worst value di�ers from the corresponding
value from the previous iteration by more than the tolerance then a further iteration is performed. The
supposition is that when values remain `constant' between iterations they have reached their optimum
value. In other words when all array elements have stabilised, the solution has been found.

The following statements,

swap => prev_approx

prev_approx => next_approx

next_approx => swap

shu�e the arrays around (turns the current approximation in to the previous one for the next iteration).
next approx ends up pointing to the old prev approx which has outlived its usefulness | on the next

September 2, 1997 University of Liverpool

21.13. Pointers and Procedures 167

iteration this array can be used to hold the next set of approximations. Here, pointer assignment replaces
two potentially expensive copy operations. The net e�ect is that prev_approx and next_approx are
swapped at the cost of 3 pointer assignments which is quite small, whereas, to swap the actual objects
would require 1000� 1000 = 1000000 real assignments, a much more expensive operation.

21.13 Pointers and Procedures

Pointer variables may be used as actual and dummy arguments in much the same way as non-pointer
variables. As with all arguments, dummies and actuals must match in type, kind and rank. Note that
a POINTER dummy argument cannot have the INTENT attribute. In some areas pointers are slightly
more exible than non-pointer arguments, for example, unallocated ALLOCATABLE arrays cannot be
passed as actual arguments to a procedure, but unassociated (unallocated) POINTER arrays can.

If a pointer is to be used as an actual argument then the interface must be explicit. The reason for
this is because a pointer argument can be interpreted in two ways:

1. immediately dereference and pass the target (the corresponding dummy argument does not have
the POINTER attribute).

2. pass the pointer so it can be manipulated as a pointer in the procedure (the corresponding dummy
argument does have the POINTER attribute).

For example,

PROGRAM Supping

IMPLICIT NONE

INTEGER, POINTER :: Pint1, Pint2

...

CALL Beer(Pint1,Pint2)

...

CONTAINS

SUBROUTINE Beer(arg1,arg2)

INTEGER, POINTER :: arg1

INTEGER, INTENT(IN) :: arg2

....

END SUBROUTINE Beer

END PROGRAM Supping

Pint2 which corresponds to the non-pointer arg2 is dereferenced before being passed to Beer, Pint1
is not.

Referring to Pint1 in the main program references exactly the same space as arg1 in the subroutine,
however, it is not guaranteed that if an unassociated pointer is associated in a procedure that on return
to the call site the pointer will still be associated. This is not de�ned to be the case in the standard.

21.14 Pointer Valued Functions

A function may be pointer valued, in the arti�cial example below the function ptr returns a pointer
to the larger of a and b:

Fortran 90 Course Notes File: CourseNotes.ps

168 21. Pointers and Targets

PROGRAM main

IMPLICIT NONE

REAL :: x

INTEGER, TARGET :: a, b

INTEGER, POINTER :: largest

CALL RANDOM_NUMBER(x)

a = 10000.0*x

CALL RANDOM_NUMBER(x)

b = 10000.0*x

largest => ptr()

print*, largest

CONTAINS

FUNCTION ptr()

INTEGER, POINTER :: ptr

IF (a .GT. b) THEN

ptr => a

ELSE

ptr => b

END IF

END FUNCTION ptr

END PROGRAM main

It is not possible to have an attribute in the FUNCTION statement so the speci�cation that the function
is pointer valued must be made amongst the declarations. The following declaration would also su�ce,

...

INTEGER FUNCTION ptr()

POINTER :: ptr

...

Clearly for the function to return a result the correct type, the function name must identify a target
by being on the LHS of a pointer assignment.

The interface of an external pointer valued function must always be explicit (see 28).

The following illustrates an external pointer valued function:

PROGRAM main

IMPLICIT NONE

REAL :: x

INTEGER, TARGET :: a, b

INTEGER, POINTER :: largest

INTERFACE

FUNCTION ptr(a,b)

IMPLICIT NONE

INTEGER, TARGET, INTENT(IN) :: a, b

INTEGER, POINTER :: ptr

END FUNCTION ptr

END INTERFACE

CALL RANDOM_NUMBER(x)

a = 10000.0*x

CALL RANDOM_NUMBER(x)

b = 10000.0*x

September 2, 1997 University of Liverpool

21.15. Pointer I / O 169

largest => ptr(a,b)

print*, a, b, "Largest: ", largest

END PROGRAM main

FUNCTION ptr(a,b)

IMPLICIT NONE

INTEGER, TARGET, INTENT(IN) :: a, b

INTEGER, POINTER :: ptr

IF (a .GT. b) THEN

ptr => a

ELSE

ptr => b

END IF

END FUNCTION ptr

21.15 Pointer I / O

When pointers appear in I / O statements they are always immediately dereferenced so their target is
accessed instead. Clearly, a pointer must not be disassociated as dereferencing would make no sense.

Consider the following example,

PROGRAM Eggie

IMPLICIT NONE

INTEGER :: ierr

REAL, DIMENSION(3), TARGET :: arr = (/1.,2.,3./)

REAL, DIMENSION(:), POINTER :: p, q

p => arr

PRINT*, p

ALLOCATE(q(5), STAT=ierr)

IF (ierr .EQ. 0) THEN

READ*, q

PRINT*, q

DEALLOCATE(q)

PRINT*, q ! invalid, no valid target

END IF

END PROGRAM Eggie

In the �rst output statement, p is dereferenced and the three real numbers are printed out in array
element ordering. The READ statement works in a very similar way. Once q has been allocated its
appearance in the input statement causes the program to expect 5 real numbers to be entered on the
standard input channel.

The last PRINT statement is an error as it is not permissible to attempt to read or write to or from a
deallocated pointer.

It is not possible to print out the address of the target of a pointer.

22 Derived Types

It is often advantageous to express some objects in terms of aggregate structures, for example:

Fortran 90 Course Notes File: CourseNotes.ps

170 22. Derived Types

2 coordinates: (x; y; z);

2 addresses: name, number, street, etc.

Fortran 90 allows compound entities or derived types to be de�ned, (in other languages these may be
known as structures or records). Programs can be made simpler, more maintainable and more robust
by judicious choice of data structures. Choosing an e�cient data structure is a complex process and
many books have been written on the subject.

In Fortran 90 a new type can be de�ned in a derived-type-statement:

TYPE COORDS_3D

REAL :: x, y, z

END TYPE COORDS_3D

The type COORDS 3D has three REAL components, x; y and z. (These could have been declared on
three separate lines and the resultant type would have been identical.) Objects of this new type can
be used in much the same way as objects of an intrinsic type, for example, in assignment statements,
as procedure arguments or in I/O statements, however, it is not permissible to initialise a component
in a derived type declaration statement.

An object of type COORDS 3D can be declared in a type declaration statement,

TYPE (COORDS_3D) :: pt

Derived type objects can be attributed in the same way as for regular type declarations, for example,
the DIMENSION, TARGET or ALLOCATABLE attributes are all valid subject to a small proviso mentioned
later.

TYPE (COORDS_3D), DIMENSION(10,20), TARGET :: pt_arr

Derived type objects can be used as dummy or actual arguments and so can be given the INTENT or
OPTIONAL attributes. they cannot, however, possess the PARAMETER attribute.

22.1 Supertypes

A new derived type can be declared that has, as one of its components, a further derived type. This
type must have already been declared or must be the type currently being declared. (The latter is how
recursive data structures are formed.)

TYPE SPHERE

TYPE (COORDS_3D) :: centre

REAL :: radius

END TYPE SPHERE

A sphere is characterised by a centre point and a radius, a type with these two components is an
intuitive way of describing such an object. This is better than de�ning a type with 4 real components
which are all at the same level:

September 2, 1997 University of Liverpool

22.2. Derived Type Assignment 171

TYPE SPHERE

REAL :: x, y, z, radius

END TYPE SPHERE

Objects of type SPHERE can be declared:

TYPE (SPHERE) :: bubble, ball

There is no sequence association for derived types, in other words, there is no reason to suppose that
objects of type COORDS 3D should occupy 3 contiguous REAL storage locations.

22.2 Derived Type Assignment

Values can be assigned to derived types in two ways:

2 component by component;

2 as an object.

The % operator can be used to select a single speci�c component of a derived type object which allows
the object to be given values in a piecewise fashion. In order to select a speci�c component it is
necessary to know the names given to the components when the derived type was initially declared.

The object bubble is of type SPHERE which we know is composed of two components: centre and a
radius, however, centre is itself a derived type component (so therefore not of intrinsic type) meaning
that the individual components must be selected from this component too. In order to assign a value
(an intrinsic typed expression) to a derived type component using a regular assignment statement, it
must be ensured that each component is fully resolved, in other words, the component selected is of
intrinsic type.

In the following two statements,

bubble%radius = 3.0

bubble%centre%x = 1.0

bubble%radius is of type REAL so can be assigned a REAL value but bubble%centre is of type
COORDS 3D which must therefore must be further resolved in order to perform assignment of a single
intrinsically typed value. bubble%centre%x (or ..%y or ..%z) is of intrinsic type so can be given a
value using the intrinsic assignment operator =.

During assignments of this type, normal type coercion rules still apply, for example, an INTEGER could
be assigned to a REAL component of a derived type with the INTEGER value simply being promoted.

As an alternative to the abovementioned component-by-component selection it is possible to use a
derived type constructor to assign values to the whole object. This structure constructor takes the
form of the derived type name followed by a parenthesised list of values, one for each component. For
example, consider,

bubble%centre = COORDS_3D(1.0,2.0,3.0)

Fortran 90 Course Notes File: CourseNotes.ps

172 22. Derived Types

bubble%centre is of type COORDS 3D so we can use the automatically de�ned derived type constructor
(COORDS 3D) to coerce the listed values to the correct type. Here, as COORDS 3D has three components
the constructor must also be supplied with 3 expressions.

The object bubble can be set up using the SPHERE constructor, this has two components, one of type
COORDS 3D and one of type REAL. As bubble%centre is of type COORDS 3D this can be used as one
component of the constructor. The other component is default REAL.

bubble = SPHERE(bubble%centre,10.)

In the above example, COORDS_3D(1.,2.,3.) could be used in place of bubble%centre.

bubble = SPHERE(COORDS_3D(1.,2.,3.),10.)

It is not possible to have,

bubble = SPHERE(1.,2.,3.,10.)

Even though the type constructor looks like a function call there is no keyword selection or optional
�elds.

Assignment between two objects of the same derived type is intrinsically de�ned, ball and bubble

can be equated,

ball = bubble

22.3 Arrays and Derived Types

It is possible to de�ne derived types which contain arrays of intrinsic or derived type objects. These
arrays cannot be ALLOCATABLE but can have the POINTER attribute.

Consider,

TYPE FLOBBLE

CHARACTER(LEN=6) :: nom

INTEGER, DIMENSION(10,10) :: harry

END TYPE FLOBBLE

TYPE (FLOBBLE) :: bill

TYPE (FLOBBLE), DIMENSION(10) :: ben

it is also possible to declare an array of objects where each element of the array also contains an array,
however, it is not permissible to refer to an `array of arrays'. We can refer to an element or subsection
of the array component:

bill%harry(7,7)

bill%harry(:,::2)

ben(1)%harry(7,7)

ben(9)%harry(:,:)

ben(:)%harry(7,7)

September 2, 1997 University of Liverpool

22.4. Derived Type I/O 173

in the above example, the �ve expressions all de�ne a section of some sort, there is only one non-scalar
index in the reference. In a derived type that has more levels of derived type nesting there can still
only be sectioning of at most one component level.

The following two expressions are not allowed because sectioning is in more than one component,

ben(:)%harry(:,::2) ! invalid

ben(9:9)%harry(:,:) ! invalid

The �rst expression is invalid because a section is taken from the array of objects and also from one of
the components of each object; the second expression is invalid for the same reason although slightly
more subtle, the reference here is a one element subsection of ben (not scalar) and the whole of the
harry component. (Remember that ben(9) is scalar and ben(9:9) is non scalar.)

22.4 Derived Type I/O

Derived type objects can be used in I/O statements in much the same way as intrinsic objects, the
only restrictions are that

2 the derived type must not contain a POINTER component, (this is because the pointer reference
may never be resolved. If, for example, a circular list structure were to appear in an output
statement the program would never terminate.)

2 the visibility of the internal type components must not be restricted (see Section 19.3).

A derived type object is written out or read in as if all the components were explicitly inserted into the
output statement in the same order in which they were de�ned.

So,

PRINT*, bubble

is exactly equivalent to

PRINT*, bubble%centre%x, bubble%centre%y, &

bubble%centre%z, bubble%radius

Derived types containing arrays are handled in the expected way. Individual components are input /
output in order with individual elements of arrays output in array element order.

22.5 Derived Types and Procedures

Derived types can be used as arguments to procedures, however, the type de�nition must be made
accessible by either use or host association. Indeed, if the same textual de�nition of a (non-SEQUENCE)
type appears in two separate program units, the two types (which have the same names, types and
components) are not considered to be the same. (This is because of optimisation | the compiler can
represent the type however it sees �t.

Fortran 90 Course Notes File: CourseNotes.ps

174 22. Derived Types

(A SEQUENCE type is a special class of derived type which relies on sequence association. The compo-
nents of a sequence type are bound to be stored in contiguous memory locations in the order of the
component declarations.)

All type de�nitions should be encapsulated in a module:

MODULE VecDef

TYPE vec

REAL :: r

REAL :: theta

END TYPE vec

END MODULE VecDef

To make the type de�nitions visible, the module must be used:

PROGRAM Up

USE VecDef

IMPLICIT NONE

TYPE(vec) :: north

CALL subby(north)

...

CONTAINS

SUBROUTINE subby(arg)

TYPE(vec), INTENT(IN) :: arg

...

END SUBROUTINE subby

END PROGRAM Up

Type de�nitions can only become accessible by host or use association.

So long as the type de�nition is visible, derived type arguments behave like intrinsically typed arguments,
they can be given attributes (OPTIONAL, INTENT, DIMENSION, SAVE, ALLOCATABLE, etc.). Interfaces
are required in the same situations as for intrinsic types.

22.6 Derived Type Valued Functions

Functions can return results of an arbitrary de�ned type

FUNCTION Poo(kanga, roo)

USE VecDef

TYPE (vec) :: Poo

TYPE (vec), INTENT(IN) :: kanga, roo

Poo = ...

END FUNCTION Poo

Recall that the type de�nition must be made available by host or use association.

Question 51: Complex arithmetic

Modify your existing Integer Complex Arithmetic module and de�ne a type INTCOMPLEX which
is able to represent a complex number with integer components.

September 2, 1997 University of Liverpool

22.6. Derived Type Valued Functions 175

TYPE(INTCOMPLEX)

INTEGER x,y

END TYPE

Modify the module procedures etc. to accept this datatype instead of the previously implemented 2
element array.

Add two functions UPLUS and UMINUS to the module which each take one INTCOMPLEX argument such
that:

UPLUS(ZI) = +ZI

UMINUS(ZI) = -ZI

Write a test program to demonstrate.

Fortran 90 Course Notes File: CourseNotes.ps

Module 9:
Modules and Object-based

Programming

22.7 POINTER Components of Derived Types

It is forbidden to include ALLOCATABLE arrays as components of derived types, however, complex data
structures can be constructed by including POINTER variables instead. These components can point to
scalar or array valued intrinsic or derived types which means that dynamically sized structures can be
created and manipulated, As an example consider,

TYPE VSTRING

CHARACTER, DIMENSION(:), POINTER :: chars

END TYPE VSTRING

Objects of this type have a component which is a pointer to a dynamically sized 1-D array of characters.
This data type is useful for storing strings of di�erent lengths.

TYPE(VSTRING) :: Pvs1, Pvs2

...

ALLOCATE(Pvs1%chars(5))

Pvs1%chars = (/"H","e","l","l","o"/)

Pvs1 H e l l o

Figure 32: A Ponter to a Variable Length String

There is a restriction concerning I/O of user-de�ned types which contain pointer components, (see
Section 22.4); the object must be resolved to an intrinsic type component. If,

TYPE(VSTRING) :: nom

...

print*, nom ! Illegal

print*, nom%chars ! fine

the composite object nom cannot be output, but since nom%chars is a pointer to a CHARACTER array
it can be written.

176

22.8. Pointers and Lists 177

22.8 Pointers and Lists

The use of pointers with derived types also provides support for structures such as linked lists. Derived
types may contain pointers to any other type including the type being currently de�ned. It is not
possible to point to a type which has yet to be de�ned, the target type must be de�ned or be being
de�ned.

In the following example, CELL contains a pointer to another object also of type CELL,

TYPE CELL

INTEGER :: val

TYPE (CELL), POINTER :: next

END TYPE CELL

this de�nes a single linked list of the following schematic structure,

Val Valnext next

27 3458

Figure 33: A Linked List With 2 Elements

the above diagram represents two cells, each cell contains a value (INTEGER) and a link to the next cell.
The last cell in the list should have a null target (use the NULLIFY command). As long as something
points to the head of the structure the whole of the list can be traversed.

Intrinsic assignment between structures containing pointer components is subtlely di�erent from `nor-
mal' assignment. = is always intrinsically de�ned for assignment between two objects of the same
derived type so when the type contains a pointer component = must \behave sensibly", in other words
it does what the user would expect it to do:

2 non-pointer components are assigned by copying the value from the RHS to the corresponding
component on the LHS,

2 pointer components are pointer assigned using the => operator.

So:

TYPE(CELL) :: A

TYPE(CELL), TARGET :: B

A = B

is equivalent to:

A%val = B%val

A%next => B%next

Other recursive structures can be built up such as singly or doubly linked lists or n-ary trees.

Fortran 90 Course Notes File: CourseNotes.ps

178 22. Derived Types

22.8.1 Linked List Example

The following fragment would create a linked list of cells starting at head and terminating with a cell
whose next pointer is null (disassociated).

PROGRAM Thingy

IMPLICIT NONE

TYPE (CELL), TARGET :: head

TYPE (CELL), POINTER :: curr, temp

INTEGER :: k

head%val = 0 ! listhead = default

NULLIFY(head%next) ! un-undefine

curr => head ! curr head of list

DO

READ*, k ! get value of k

ALLOCATE(temp) ! create new cell

temp%val=k ! assign k to new cell

NULLIFY(temp%next) ! set disassociated

curr%next => temp ! attach new cell to

! end of list

curr => temp ! curr points to new

! end of list

END DO

END PROGRAM Thingy

There now follows a line-by-line dissection of the example,

2 TYPE (CELL), TARGET :: head | this is a cell which anchors the list. This is the starting
point for traversal of the list.

2 TYPE (CELL), POINTER :: curr, temp | declare pointers to two cells. curr points to the
current position in the list (this will tell us where the next list cell is to be added), temp is used
for receiving a newly allocated cell before it gets tagged onto the list.

2 INTEGER :: k variable used when reading the data.

2 head%val = 0 | set the value of the list anchor to be zero (null).

2 NULLIFY(head%next) disassociate (nullify) the head of the list.

2 curr => head | curr marks the position in the list where the next cell is to be added. As we
haven't really started yet this is at the head of the list.

2 DO ... END DO | a loop where the input is read and the list is built up.

2 READ ... | read value of k.

2 ALLOCATE(temp) | creates a new cell called temp, if the loop is not on its �rst iteration the
previously created cell will have been attached to the end of the list. The ALLOCATE statement
will create a new temp elsewhere in the memory which can then (eventually) be attached to the
linked list.

2 temp%val=k | set the value part of the cell to the previous input value.

2 NULLIFY(temp%next)| initialise (disassociate, nullify) the pointer component of the new cell.
This cell will be the end of the list for at least one loop iteration.

September 2, 1997 University of Liverpool

22.8. Pointers and Lists 179

2 curr%next => temp | attach the new cell to the end of the list. The list is anchored by head
and the last cell in the list is nulli�ed and pointed to by curr. Adding a new cell to the end
of the list is achieved by simply making the last list item point to the new cell. The pointer
component of the new cell has already been nulli�ed ready for the next iteration of the loop.

2 curr => temp reassign the pointer which indicates the end of the list. temp is now the last item
in the list so curr should be made to point to this cell.

To summarise:

head%val = 0

NULLIFY(head%next)

curr => head

Null0

head

curr

Figure 34: Initialisation of the List

This �rst set of statements take a TARGET cell head (the head of the list) and initialise it. Here,
initialisation involves setting the numeric component to zero (head%val = 0), and NULLIFYing the
pointer component. The pointer curr is set to point a the current insert point in the list; as the list
has no members the current insert point is at the head of the list.

ALLOCATE(temp)

temp%val = k

NULLIFY(temp%next)

Null

temp

k

Figure 35: Initialisation of a New Cell

The second sequence of statements creates a new cell from the heap storage (called temp). This cell
has its value component set to the most recent input value, (k,) and is then given the disassociated
status (using NULLIFY).

curr%next => temp

curr => temp

Fortran 90 Course Notes File: CourseNotes.ps

180 22. Derived Types

Nullk

head

0

curr

Figure 36: The Addition of a New List Member

The third sequence of statements take the new cell an insert it in the list at the current insert point.
The insert point (pointed to by curr) is then moved to reect the addition.

head

0 k Null

curr

Figure 37: The General Structure of the List

When the list is completed it will have a structure similar to that given in the above diagram. The list
can be traversed by starting at the head cell and following the pointer links.

It is no good having a linked list if it cannot be navigated. A \walk-through" which prints each cell
value out could be programmed as follows:

curr => head

DO

PRINT*, curr%val

IF(.NOT.ASSOCIATED(curr%next)) EXIT

curr => curr%next

END DO

2 curr => head | the variable curr is used as a place-marker. Since we do not need to know
where the end of the list is there is no need to keep curr pointing at it. (We can always �nd the
end by starting at the head and traversing the list until we reach a null pointer.) Thus, curr is
being reused.

2 DO ... END DO | the list traversal is performed within this loop. The criterion for exiting is
that the pointer component of the current cell is disassociated (null).

2 PRINT*, curr%val| print out the value of the current cell, this �rst time around the loop this
will be the value of the list head which was set to the default value of 0, if this is not required
then it should be skipped.

September 2, 1997 University of Liverpool

22.9. Arrays of Pointers 181

2 IF(.NOT.ASSOCIATED(curr%next)) EXIT| if the pointer is not associated with a target then
the loop is exited. This can be thought of as \if the pointer component is null then EXIT".

2 curr => curr%next | move to the next cell, the statement says \make curr point to the
target of curr%next". (curr%next is immediately dereferenced.)

Question 52: De�ned Types and Pointers

Write a program to implement a tree sort. The program should read in textual names from standard
input and place each name in a binary tree. The algorithm is

1. read in a name

2. IF name = 'end' EXIT

3. add the name to the tree

4. print the tree

Steps 3 and 4 should be implemented with recursive procedures.

The algorithm for Step 3 is for each node:

1. if the node is null, add the name to the node and return

2. if the name is earlier in the alphabet than the node name

2 recursively go down the left branch

otherwise

2 recursively go down the right branch

The algorithm for Step 4 is:

1. if the node is null return

2. recursively print the left branch

3. print the node name

4. recursively print the right branch

22.9 Arrays of Pointers

As it is possible to create arrays of objects of derived types, so is possible to create what are in e�ect
arrays of pointers:

TYPE iPTR

INTEGER, POINTER :: compon

END TYPE iPTR

TYPE(iPTR), DIMENSION(100) :: ints

Fortran 90 Course Notes File: CourseNotes.ps

182 22. Derived Types

ints

Figure 38: Visualisation of an Array Of Pointers

Visualisation,

Here we have an array of 100 elements each of which can point to an INTEGER. It is not possible to
refer to ints(:) as there is no context where a whole array (or sub-array) of pointers like this can be
used, dereferencing can only be used on a scalar pointer,

ints(10)%compon ! valid

ints(:)%compon ! not valid

ints(10:10)%compon ! not valid

If desired ints could have been ALLOCATABLE:

TYPE iPTR

INTEGER, POINTER :: compon

END TYPE iPTR

TYPE(iPTR), DIMENSION(:), ALLOCATABLE :: ints

....

ALLOCATE(ints(100))

The following is also acceptable and de�nes and array of pointers to integer arrays,

TYPE iaPTR

INTEGER, POINTER, DIMENSION(:) :: acompon

END TYPE iaPTR

TYPE(iaPTR), DIMENSION(100) :: intsarrays

Each pointer component can be made to point to an unnamed part of the heap storage or to an existing
array,

INTEGER :: ierr

...

ALLOCATE(intsarrays(1)%acompon(20),STAT=ierr)

...

ALLOCATE(intsarrays(2)%acompon(40),STAT=ierr)

September 2, 1997 University of Liverpool

22.9. Arrays of Pointers 183

or

INTEGER, TARGET :: Ia(6), Ib(7), Ic(8)

...

intsarrays(1)%acompon => Ia

intsarrays(2)%acompon => Ib

intsarrays(3)%acompon => Ic

ALLOCATABLE arrays cannot be components of derived types.

Question 53: Arrays of Pointers

Rewrite the `MAXLOC' sorting example using an array of pointers instead of a vector subscript to
hold the order of the numbers.

Question 54: Sorting Using Pointers

Using derived types and pointers to minimise storage, write a program to set up a user-speci�ed
number of 5 element arrays, and �ll them with random numbers between 0. and 1000.0 and then using
your SimpleStats MODULE sort them �rstly on the basis of their mean and secondly on the basis of
their standard deviation. Print out the results of the sorting so that the array with the greatest mean
is printed out �rst alongside the actual value of its mean (to demonstrate correctness) and the array
with the smallest mean is printed out last. Do the same with the sorted list of standard deviations, viz:

Position 1. Mean = 452.0

Array is 960.66666 34.87311

Position 2. Mean = 122.5

Array is 460.92653 50.80036

Position 10. Mean = 781.77

Array is 160.23456 4.80713

and so on.

[Hint: Use an array of the following user de�ned type:

TYPE ARRAY_INFO

REAL, DIMENSION(:), POINTER :: Array

REAL :: ArrayMean

REAL :: ArrayDev

END TYPE ARRAY_INFO

to hold the array, its mean and its standard deviation. You should create two arrays where each element
can point to objects of type ARRAY_INFO these arrays can be used to represent the sorted mean and
standard deviation lists.

You may �nd it useful to employ other data structures to aid the solution. Do not worry about
implementing an e�cient sorting mechanism.]

Fortran 90 Course Notes File: CourseNotes.ps

184 23. Modules | Type and Procedure Packaging

23 Modules | Type and Procedure Packaging

In a `proper' program it would be very useful to use derived types in the same way as intrinsic types
and even use them interchangeably with intrinsic types. To do this we must, for each derived type
de�nition, provide the same functionality that is provided for intrinsic types. For example, there are
no intrinsic functions de�ned for user-de�ned types and operations between derived and intrinsic types
are very limited, however,

2 procedure arguments can be derived types.

2 functions can return results of derived types.

2 operators can be overloaded to apply to derived types.

So we can write a `package' which contains:

2 type de�nitions,

2 constructors,

2 overloaded intrinsics,

2 an overload set of operators,

2 generic overload set de�nitions,

2 other useful procedures.

This form of bundling is known as `encapsulation'.

There are many advantages to including the above functionality in a module,

2 derived type de�nitions must be placed in a module so that their structure can be made visible
by use association in non MODULE program units,

2 the interfaces for generic procedures, user de�ned operators, operator overloads and assignment
overloads must all be explicit,

2 following the same logic it makes excellent sense to put the actual overloaded intrinsic procedures
and intrinsic operators in this module too.

2 any other relevant procedures should also be placed in the module to provide an encapsulated
package of type de�nitions, operator de�nitions, intrinsic procedures and access routines.

This module, when USEd, would provide an almost transparent semantic extension to Fortran 90.

An example of this kind of module is the varying string module which is to be an ancillary standard
to Fortran 95. An implementation of this module has been written at Liverpool and includes all the
relevant intrinsic functions, for example, LEN, INDEX, and operators, for example, //, LGE, =, which
have been de�ned for the new VARYING STRING type. This means that objects of type VARYING STRING

can be used (almost) transparently with objects of the same and intrinsic (CHARACTER) type.

September 2, 1997 University of Liverpool

23.1. Derived Type Constructors 185

23.1 Derived Type Constructors

Derived types have their in-built constructors, however, it is often a good idea to write a speci�c routine
instead. These should always be used instead of the default constructor.

Purpose written constructors can support default values, optional and keyword arguments and will not
have to be modi�ed if the internal structure of the type is changed. It is also possible to hide the
internal details of the type by placing a PRIVATE statement with the type de�nition:

MODULE ThreeDee

IMPLICIT NONE

TYPE Coords_3D

PRIVATE

REAL :: x, y, z

END TYPE Coords_3D

CONTAINS

TYPE(Coords_3D) FUNCTION Init_Coords_3D(x,y,z)

REAL, INTENT(IN), OPTIONAL :: x,y,z

! Set Defaults

Init_Coords_3D = Coords_3D(0.0,0.0,0.0)

IF (PRESENT(x)) Init_Coords_3D%x = x

IF (PRESENT(y)) Init_Coords_3D%y = y

IF (PRESENT(z)) Init_Coords_3D%z = z

END FUNCTION Init_Coords_3D

END MODULE ThreeDee

If an argument is not supplied then the corresponding component of Coords 3D is set to zero.

The following calls are all valid,

PROGRAM Testo3D

USE ThreeDee

IMPLICIT NONE

TYPE(Coords_3D) :: pt1, pt2, pt3

pt1 = Init_Coords_3D()

pt2 = Init_Coords_3D(1.0,2.0)

pt3 = Init_Coords_3D(y=10.0)

PRINT*, "pt1:", pt1

PRINT*, "pt2:", pt2

PRINT*, "pt3:", pt3

END PROGRAM Testo3D

This program will produce:

Fortran 90 Course Notes File: CourseNotes.ps

186 23. Modules | Type and Procedure Packaging

pt1: 0.0 0.0 0.0

pt2: 1.0 2.0 0.0

pt3: 0.0 10.0 0.0

This approach allows greater exibility.

23.2 Generic Procedures

De�ning a generic interface to a procedure is a way of grouping procedures with similar functionality
together under one name. Typically a generic procedure interface has a general name and contains a list
of speci�c procedures with similar functionality which are implemented for all data types in a program.
Whenever the generic procedure name is used the compiler is able to tell which speci�c procedure this
instance of use corresponds to by looking the types of the actual arguments. The speci�c procedure
can then be invoked.

Most intrinsics are generic in that their type is determined by their argument(s). For example, ABS(X):

2 returns a real value if X is REAL.

2 returns a real value if X is COMPLEX.

2 returns a integer value if X is INTEGER.

It is possible to ignore the generic interface and still refer to a procedure by its speci�c name, for
example, DABS, CABS, or DABS| the end e�ect will be the same. Note that if the procedure name
is used as an actual argument then the speci�c name must be used. Fortran 90 does not support
run-time resolution of generic overloads as this would compromise e�ciency.

A user can de�ne his / her own generic names for user procedures. This is implemented through a
generic interface speci�cation. The user may then call the procedure with a generic name and the
compiler will examine the number, type, rank and kind of the non-optional arguments to decide which
speci�c procedure to call (at compile-time). (See Section 25.9 for the interaction between generic
interfaces and kinds.) If no such procedure exists then an error is generated. The set of procedures in
the generic interface is known as an overload set. For example,

INTERFACE CLEAR

SUBROUTINE clear_int(a)

INTEGER, DIMENSION(:), INTENT(INOUT) :: a

END SUBROUTINE clear_int

SUBROUTINE clear_real(a)

REAL, DIMENSION(:), INTENT(INOUT) :: a

END SUBROUTINE clear_real

END INTERFACE ! CLEAR

clear int and clear real can both be called by the generic name CLEAR. clear int will be called
if the actual argument is INTEGER, clear real will be invoked if the argument is REAL. The overload
set consists of clear int and clear real. It is believed that using generic procedure names makes
programming much easier as the user does not have to remember the speci�c name of a procedure but
only the function that it performs.

Procedures in a generic interface must be all functions or all subroutines | they cannot be mixed. In
the case of functions, it is the type of the arguments not the type of the result which determines which
speci�c procedure is called.

September 2, 1997 University of Liverpool

23.3. Generic Interfaces | Commentary 187

In order to use user de�ned generic procedure names the interfaces must be explicit. The best way to
do this is to put the generic interface into a module and attach it by USE association.

Note: currently the END INTERFACE statement cannot contain the interface name! This is a language
anomaly and is due to be corrected in Fortran 95. It is likely that many compilers will accept code
with the name present.

Given,

MODULE schmodule

INTERFACE CLEAR ! generic int

MODULE PROCEDURE clear_int

MODULE PROCEDURE clear_real

END INTERFACE ! CLEAR

CONTAINS

SUBROUTINE clear_int(a)

INTEGER, DIMENSION(:), INTENT(INOUT) :: a

.... ! actual code

END SUBROUTINE clear_int

SUBROUTINE clear_real(a)

REAL, DIMENSION(:), INTENT(INOUT) :: a

.... ! actual code

END SUBROUTINE clear_real

END MODULE schmodule

PROGRAM Main

IMPLICIT NONE

USE schmodule

REAL :: prices(100)

INTEGER :: counts(50)

CALL CLEAR(prices) ! generic call

CALL CLEAR(counts) ! generic call

END PROGRAM Main

prices is a real-valued array so the corresponding speci�c procedure from the overload set is the one
with a single real-valued array as a dummy argument | clear real.

counts is integer-valued so the second call will be resolved to clear int.

In order for the compiler to be able to resolve the reference, both module procedures must be unique
with respect to their (non-optional) arguments.

23.3 Generic Interfaces | Commentary

In order for a call to a generic interface to be resolved the overload set must be unambiguous. In
other words, the speci�ed procedures must all be unique in at least one of: type, kind or rank in their
non-optional arguments. (In other words, by examining the argument(s), the compiler calculates
which speci�c procedure to invoke.)

When parametrised types are being used in a program, default intrinsic types should not be used for
arguments in procedures that occur in generic interfaces. This is because the default type corresponds
to a particular kind which varies from processor to processor. (See Section 25.8.)

Fortran 90 Course Notes File: CourseNotes.ps

188 23. Modules | Type and Procedure Packaging

23.4 Derived Type I/O

Derived types with PRIVATE components need special procedures for I/O. They cannot be used in a
simple PRINT or WRITE statement:

MODULE ThreeDee

IMPLICIT NONE

TYPE Coords_3D

PRIVATE

REAL :: x, y, z

END TYPE Coords_3D

INTERFACE Print

MODULE PROCEDURE Print_Coords_3D

END INTERFACE ! Print

CONTAINS

SUBROUTINE Print_Coords_3D(Coord)

TYPE(Coords_3D), INTENT(IN) :: Coord

PRINT*, Coord%x, Coord%y, Coord%z

END SUBROUTINE Print_Coords_3D

TYPE(Coords_3D) FUNCTION Init_Coords_3D(x,y,z)

REAL, INTENT(IN), OPTIONAL :: x,y,z

! Set Defaults

Init_Coords_3D = Coords_3D(0.0,0.0,0.0)

IF (PRESENT(x)) Init_Coords_3D%x = x

IF (PRESENT(y)) Init_Coords_3D%y = y

IF (PRESENT(z)) Init_Coords_3D%z = z

END FUNCTION Init_Coords_3D

END MODULE ThreeDee

Coords 3D may only be output via the generic interface Print which calls the Print Coords 3D

procedure. A generic Print interface can be extended for each and every derived type de�ned:

CALL Print(init_Coords_3D(1.0,2.0,3.0))

Using this approach further abstracts the type de�nition from the users program. If the internal
structure of the type is changed then the output routine can be changed accordingly | the users'
program can remain untouched.

23.5 Overloading Intrinsic Procedures

When a new type is added, it is a simple process to add a new overload to any relevant intrinsic
procedures. A generic interface is de�ned with the same name as the existing generic intrinsic name.

September 2, 1997 University of Liverpool

23.5. Overloading Intrinsic Procedures 189

Any procedures included in this interface speci�cation are added to the overload set. (Note: The
body of the procedures should be PURE in the sense that they should not alter any global data or
produce output.) Existing intrinsics may be actually be rede�ned by including a procedure with the
same argument types as the original intrinsic. When the generic name is supplied, the new procedure
is called instead of the Fortran 90 intrinsic of the same name.

As an example, assume that we wish to extend the LEN TRIM intrinsic to return the number of letters
in the owners name when applied to objects of type HOUSE,

MODULE new_house_defs

IMPLICIT NONE

TYPE HOUSE

CHARACTER(LEN=16) :: owner

INTEGER :: residents

REAL :: value

END TYPE HOUSE

INTERFACE LEN_TRIM

MODULE PROCEDURE owner_len_trim

END INTERFACE

CONTAINS

FUNCTION owner_len_trim(ho)

TYPE(HOUSE), INTENT(IN) :: ho

INTEGER :: owner_len_trim

owner_len = LEN_TRIM(ho%owner)

END FUNCTION owner_len_trim

.... ! other encapsulated stuff

END MODULE new_house_defs

The user de�ned procedures are added to the existing generic overload set whenever the above module
is USEd.

Intrinsic function overloading is used in the VARYING STRING module. All the intrinsic functions that
apply to CHARACTER variables have been overloaded to apply to object of type VARYING STRING. Thus
VARYING STRING objects may be used in exactly the same way as CHARACTER objects.

Question 55: Complex Arithmetic | Generic Interfaces

Enhance your Integer Complex Arithmetic module by adding the overload sets for the following
intrinsics:

2 REAL | returns INTEGER result; the real part of a complex number. Eg, REAL(x,y) is x

2 INT | returns INTEGER result; as above.

2 AIMAG | returns INTEGER result; the imaginary part of a complex number.Eg, AIMAG(x,y) is y

2 CONJG | returns INTCOMPLEX result; the conjugate of a complex number. Eg, CONJG(x,y) is
(x,-y).

2 ABS| returns REAL result; absolute value of a complex number. Eg, ABS(x,y) is SQRT(x*x+y*y).

so that they accept arguments of type INTCOMPLEX. (REAL and INT should have the same functionality,
ie, return the �rst (non-imaginary) component of the number.)

Fortran 90 Course Notes File: CourseNotes.ps

190 23. Modules | Type and Procedure Packaging

Demonstrate that the whole module works by USEing it with the following test program (which is
available by anonymous ftp from ftp.liv.ac.uk in the directory /pub/f90courses/progs, �lename
IntegerComplex2zProgram.f90).

PROGRAM Testo

USE Integer_Complex_Arithmetic

IMPLICIT NONE

PRINT*, "REAL(3,4)"

PRINT*, REAL(INTCOMPLEX(3,4))

PRINT*, "INT(3,4)"

PRINT*, INT(INTCOMPLEX(3,4))

PRINT*, "AIMAG(3,4)"

PRINT*, AIMAG(INTCOMPLEX(3,4))

PRINT*, "CONJG(3,4)"

PRINT*, CONJG(INTCOMPLEX(3,4))

PRINT*, "ABS(3,4)"

PRINT*, ABS(INTCOMPLEX(3,4))

END PROGRAM Testo

23.6 Overloading Operators

Intrinsic operators, such as -, = and *, can be overloaded to apply to all types in a program. This
should be encapsulated in a module:

2 specify the generic operator symbol (in parentheses) in an INTERFACE OPERATOR statement,

2 specify the overload set in a generic interface,

2 declare the MODULE PROCEDUREs (FUNCTIONs) which de�ne how the operations are implemented.

These functions have one or two non-optional arguments with INTENT(IN) which correspond to
monadic and dyadic operators.

For a dyadic operator the function has two arguments, the �rst corresponds to the LHS operand
and the second to the RHS operand. For example, to de�ne addition between an integer and, say,
a representation of a rational number, there would have to be two procedures de�ned, one for the
integer-rational combination and one for for the rational-integer combination. A monadic operator has
a corresponding procedure with only one argument.

As usual overloads are resolved by examining the number, type, rank and kind of the arguments so the
overload set must be unambiguous. The body of the procedures should be PURE in the sense that they
should not alter any arguments, global data or produce output.

23.6.1 Operator Overloading Example

The '*' operator can be extended to apply to the rational number data type as follows:

MODULE rational_arithmetic

September 2, 1997 University of Liverpool

23.6. Overloading Operators 191

IMPLICIT NONE

TYPE RATNUM

INTEGER :: num, den

END TYPE RATNUM

INTERFACE OPERATOR (*)

MODULE PROCEDURE rat_rat, int_rat, rat_int

END INTERFACE

CONTAINS

FUNCTION rat_rat(l,r) ! rat * rat

TYPE(RATNUM), INTENT(IN) :: l,r

...

END FUNCTION rat_rat

FUNCTION int_rat(l,r) ! int * rat

INTEGER, INTENT(IN) :: l

TYPE(RATNUM), INTENT(IN) :: r

...

END FUNCTION int_rat

FUNCTION rat_int(l,r) ! rat * int

TYPE(RATNUM), INTENT(IN) :: l

INTEGER, INTENT(IN) :: r

...

END FUNCTION rat_int

END MODULE rational_arithmetic

In order for multiplication to be de�ned between all combinations of integer and rational numbers
three new combinations must be de�ned. Obviously integer-integer multiplication already is de�ned,
the remaining three combinations, (integer-rational, rational-integer and rational-rational) are de�ned
in the procedures int rat, rat int and rat rat respectively. These three new procedures are added
to the operator overload set of the * operator.

It is not possible to modify the operator precedence, when an operator is overloaded it retains its place
in the pecking order of operators.

With the following type declarations in force,

USE rational_arithmetic

TYPE (RATNUM) :: ra, rb, rc

the following speci�c function references would be valid:

rc = rat_rat(int_rat(2,ra),rb)

however, using overloaded intrinsic operators is clearer and should be encouraged:

rc = 2*ra*rb

And even better still add visibility attributes to force user into good coding:

MODULE rational_arithmetic

TYPE RATNUM

PRIVATE

Fortran 90 Course Notes File: CourseNotes.ps

192 23. Modules | Type and Procedure Packaging

INTEGER :: num, den

END TYPE RATNUM

INTERFACE OPERATOR (*)

MODULE PROCEDURE rat_rat,int_rat,rat_int

END INTERFACE

PRIVATE :: rat_rat,int_rat,rat_int

....

it is now not possible to use rat rat, etc.

Every intrinsic operator can be overloaded. Some operators exist in both monadic and dyadic forms,
for example, + and -, and if they are both to be overloaded they must be handled as separate cases.

Question 56: Complex Arithmetic | Overloading Operators

Modify your Integer Complex Arithmetic module so that the procedures which perform the �ve
basic arithmetic operations overload the intrinsic operators. Do the same with the procedures that
perform unary plus and unary minus.

23.7 De�ning New Operators

As well as overloading existing intrinsic operators, new operators can be de�ned. They follow the dot
notation of Fortrans non-symbolic operators, such as .AND. or .OR.. They have the form,

.< name>.

where < name> can only contain letters. (Operator names can be the same as object names with no
conict.)

For all operator de�nitions, there must be one or two INTENT(IN) arguments corresponding to the
de�nition of a monadic or dyadic operator. As with generic procedure interfaces there must be a
unique set of overloads, no duplicity is allowed. Of all operators, a user-de�ned monadic has the
highest precedence and a user-de�ned dyadic has the lowest.

It is not possible to rede�ne the meanings of intrinsic operators (such as .NOT. and .GE.).

23.7.1 De�ned Operator Example

Consider the following module containing the de�nition of the .TWIDDLE. operator in both monadic
and dyadic forms,

MODULE twiddle_op

INTERFACE OPERATOR (.TWIDDLE.)

MODULE PROCEDURE itwiddle, iitwiddle

END INTERFACE ! (.TWIDDLE.)

CONTAINS

FUNCTION itwiddle(i)

INTEGER itwiddle

INTEGER, INTENT(IN) :: i

September 2, 1997 University of Liverpool

23.7. De�ning New Operators 193

itwiddle = -i*i

END FUNCTION

FUNCTION iitwiddle(i,j)

INTEGER iitwiddle

INTEGER, INTENT(IN) :: i,j

iitwiddle = -i*j

END FUNCTION

END MODULE

The following program

PROGRAM main

USE twiddle_op

print*, 2.TWIDDLE.5, .TWIDDLE.8, .TWIDDLE.(2.TWIDDLE.5), &

.TWIDDLE.2.TWIDDLE.5

END PROGRAM

produces

-10 -64 -100 20

Note the INTENT attribute which is mandatory and that the END INTERFACE statement cannot contain
the operator name.

The above example highlights how operator precedence inuences the results of .TWIDDLE.(2.TWIDDLE.5)
and .TWIDDLE.2.TWIDDLE.5. The parentheses modify the execution order so that in the �rst case
2.TWIDDLE.5 is evaluated �rst; the second expression uses intrinsic operator precedence meaning that
the �rst expression to be evaluated is the monadic occurrence of TWIDDLE.

Question 57: Series and Parallel Resistance, De�ned Operators

De�ne a module called LECCY OPS containing two operators .PARALLEL. and .SERIES. which,
given two default REAL resistance values as operands will deliver the resistance obtained by connecting
them in parallel or series.

For series resistance:

R = R1 +R2

and for parallel:
1

R
=

1

R1

+
1

R2

Use the following test program (which is available by anonymous ftp from ftp.liv.ac.uk in the di-
rectory /pub/f90courses/progs, �lename DefinedOperatorResistanceQuestion.f90 to demon-
strate correctness of the module.

PROGRAM Testo

USE Resistance

Print*, "10.0 .SERIES. 50.0", 10.0 .SERIES. 50.0

Print*, "10.0 .PARALLEL. 50.0", 10.0 .PARALLEL. 50.0

END PROGRAM Testo

Fortran 90 Course Notes File: CourseNotes.ps

194 23. Modules | Type and Procedure Packaging

23.7.2 Precedence

There is an intrinsic ordering of operators (see 10.7). Every operator in Fortran 90 has a precedence;
the operator with the highest precedence is combined with its operand(s) �rst. User de�ned monadic
operators have the highest precedence of all operators, and user de�ned dyadic operators have the
lowest precedence. User de�ned operators which have the same name as intrinsic operators retain the
same precedence.

For example, assume that there are two user de�ned operators (one monadic the other dyadic), then
the expression,

.TWIDDLE.e**j/a.TWIDDLE.b+c.AND.d

is equivalent to

(((.TWIDDLE.e)**j)/a).TWIDDLE.((b+c).AND.d)

The monadic .TWIDDLE. operator is combined with its operand �rst whereas the dyadic .TWIDDLE.

will be the last operator to be considered.

23.8 User-de�ned Assignment

Assignment between two objects of intrinsic type and between the same user de�ned type is intrinsically
de�ned, however, assignment between two di�erent user-de�ned types or between an intrinsic and a
user-de�ned type must be explicitly programmed.

Assignment overloading is done in much the same way as operator overloading except that the procedure
which de�nes the assignment process is a SUBROUTINE with two arguments. The body of the procedure
should be PURE in the sense that it should not alter any arguments, global data or produce output.
Speci�cation of the subroutines which describe how the assignment is performed are given in an INTER-
FACE ASSIGNMENT block, these subroutines must have the following properties:

2 the �rst argument is the variable which receives the assigned value, the LHS. It must have the
INTENT(OUT) attribute;

2 the second actual argument is the expression whose value is converted and assigned to the result
the RHS expression. The corresponding dummy argument must have the INTENT(IN) attribute.

23.8.1 De�ned Assignment Example

Take the rational numbers example, de�ning the mathematical operators (+, -, *, / and **) is of
little use if the assignment operator (=) is unde�ned. A module should be written which speci�es an
interface giving the overload set for the assignment operator, the rules should be explicitly de�ned in
module procedures for assignment between:

2 LHS REAL; RHS RATNUM

2 LHS RATNUM; RHS INTEGER

September 2, 1997 University of Liverpool

23.8. User-de�ned Assignment 195

The following interface speci�es which procedures should be employed for assignment involving rational
numbers:

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE rat_ass_int, real_ass_rat

END INTERFACE

PRIVATE rat_ass_int, real_ass_rat

The speci�c procedures will be given in the CONTAINS block of the module:

SUBROUTINE rat_ass_int(var, exp)

TYPE (RATNUM), INTENT(OUT) :: var

INTEGER, INTENT(IN) :: exp

var%num = exp

var%den = 1

END SUBROUTINE rat_ass_int

SUBROUTINE real_ass_rat(var, exp)

REAL, INTENT(OUT) :: var

TYPE (RATNUM), INTENT(IN) :: exp

var = exp%num / exp%den

END SUBROUTINE real_ass_rat

the body of each subroutine must contain an assignment to the �rst argument.

Wherever the module is used the following is valid:

ra = 50

i = rb*rc

If i is declared as an INTEGER and all other objects are of type RATNUM, then the �rst assignment follows
the rules that are laid out in the procedure rat ass int and the second accesses real ass rat.

Question 58: Complex Arithmetic | Overloading the Assignment Operator

Modify your Integer Complex Arithmetic module so that the assignment operator is overloaded
to allow objects of type INTEGER and REAL to be assigned to INTCOMPLEX objects. (REAL values should
be truncated before use.)

23.8.2 Semantic Extension Example

The visibility speci�ers can be applied to all objects including type de�nitions, procedures and operators.
It is a particularly good idea to deny access to the module procedures which de�ne what overloading
a certain operator actually means. For example, consider the rational arithmetic module, we clearly
want the * operator to be visible by use association (PUBLIC) but there is no advantage to be gained
by allowing rat rat, int rat and rat int to be visible to the user. An analogous situation arises for
the assignment operator:

For example,

Fortran 90 Course Notes File: CourseNotes.ps

196 23. Modules | Type and Procedure Packaging

MODULE rational_arithmetic

IMPLICIT NONE

PUBLIC :: OPERATOR (*)

PUBLIC :: ASSIGNMENT (=)

TYPE RATNUM

PRIVATE

INTEGER :: num, den

END TYPE RATNUM

TYPE, PRIVATE :: INTERNAL

INTEGER :: lhs, rhs

END TYPE INTERNAL

INTERFACE OPERATOR (*)

MODULE PROCEDURE rat_rat, int_rat, rat_int

END INTERFACE ! OPERATOR (*)

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE rat_ass_int, real_ass_rat

END INTERFACE ! ASSIGNMENT (=)

PRIVATE rat_rat, int_rat, rat_int, rat_ass_int, real_ass_rat

CONTAINS

SUBROUTINE rat_ass_int(var, exp)

... ! and so on

END SUBROUTINE rat_ass_int

! etc

END MODULE rational_arithmetic

The type INTERNAL is only accessible from within the module.

The following entities are PUBLIC: RATNUM type (no internal access) *, =; the rest are PRIVATE:
rat rat, int rat, rat int, rat ass int, real ass rat and the type INTERNAL. Note that the
visibility statements for named entities must come after their declaration (after the MODULE PROC-

EDURE statements).

To build a complete \class" should also add:

2 constructors for RATNUM: init_RATNUM

2 output procedure for RATNUM: Print

2 overloaded intrinsics: REAL, CEILING, FLOOR, etc

23.8.3 Yet Another Example

De�ne a module,

September 2, 1997 University of Liverpool

23.8. User-de�ned Assignment 197

MODULE circles

IMPLICIT NONE

PRIVATE

TYPE, PUBLIC :: POINT

REAL :: x,y

END TYPE POINT

TYPE, PUBLIC :: CIRCLE

TYPE(POINT) :: centre

REAL :: radius

END TYPE CIRCLE

INTERFACE OPERATOR (.CROSSES.)

MODULE PROCEDURE circle_crosses

END INTERFACE

PUBLIC OPERATOR (.CROSSES.)

CONTAINS

LOGICAL FUNCTION circle_crosses(c1,c2)

TYPE(CIRCLE), INTENT(IN) :: c1,c2

REAL :: d

d = (c1%centre%x - c2%centre%x)**2 + &

(c1%centre%y - c2%centre%y)**2

IF(d < (c1%radius + c2%radius)**2 .OR. &

d > (c1%radius - c2%radius)**2) THEN

circle_crosses = .TRUE.

ELSE

circle_crosses = .FALSE.

END IF

END FUNCTION circle_crosses

END MODULE circles

This is an example demonstrating the visibility attributes, operator de�nition, encapsulation, and de-
rived type de�nitions.

2 internal components of POINT and CIRCLE are not visible,

2 the operator .CROSSES. can be seen but the procedure circle crosses cannot.

Program calls module,

PROGRAM Example

USE circles

TYPE(CIRCLE), DIMENSION(8) :: c

INTEGER :: Xings=0

... ! read in data c(1:8)

DO I= 1,8

DO J = 1, I-1

IF(c(I) .CROSSES. c(J)) THEN

PRINT*, I, ' crosses ', J

Xings = Xings + 1

END IF

END DO

END DO

PRINT*, "Num circles which cross = ", Xings

END PROGRAM

Fortran 90 Course Notes File: CourseNotes.ps

198 23. Modules | Type and Procedure Packaging

When the module appears in a USE statement the type de�nition and operator can safely be used,
however, any reference to the type components or the procedure circle crosses would be an error.

Question 59: Complex Arithmetic | Accessibility control

Modify your Integer Complex Arithmetic module to take advantage of the accessibility state-
ments.

Use accessibility statements to restrict visibility of the module procedures, and type structure. Write a
constructor function and I / O subroutines for the INTCOMPLEX type which have the following interfaces:

2 construction

TYPE(INTCOMPLEX) FUNCTION Setup_INTCOMPLEX(i1,i2)

INTEGER, INTENT(IN) :: i1, i2

END FUNCTION Setup_INTCOMPLEX

2 output,

SUBROUTINE Put_INTCOMPLEX(ic)

TYPE(INTCOMPLEX), INTENT(IN) :: ic

END SUBROUTINE Put_INTCOMPLEX

2 input

SUBROUTINE Get_INTCOMPLEX(ic)

TYPE(INTCOMPLEX), INTENT(OUT) :: ic

END SUBROUTINE Get_INTCOMPLEX

Demonstrate that the whole module works by USEing it with the following test program (which is
available by anonymous ftp from ftp.liv.ac.uk in the directory /pub/f90courses/progs, �lename
IntegerComplex3cProgram.f90).

PROGRAM Testo

USE Integer_Complex_Arithmetic

IMPLICIT NONE

TYPE(INTCOMPLEX) :: var1, var2, ans

var1 = 3

PRINT*, "var1 = 3"

CALL Put_INTCOMPLEX(var1)

PRINT*, ""

var1 = 6.0

PRINT*, "var1 = 6.0"

CALL Put_INTCOMPLEX(var1)

PRINT*, ""

var1 = 6.2

PRINT*, "var1 = 6.2"

CALL Put_INTCOMPLEX(var1)

September 2, 1997 University of Liverpool

23.8. User-de�ned Assignment 199

PRINT*, ""

var1 = 6.6

PRINT*, "var1 = 6.6"

CALL Put_INTCOMPLEX(var1)

PRINT*, ""

var1 = Setup_INTCOMPLEX(1,2)

var2 = Setup_INTCOMPLEX(3,4)

PRINT*, "(1,2)+(3,4)"

ans = var1 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(1,2)-(3,4)"

ans = var1 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(1,2)/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(3,4)/(3,4)"

ans = var2 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(3,4)/(1,2)"

ans = var2 / var1

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(1,2)*(3,4)"

ans = var1 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "(1,2)**3"

ans = var1 ** 3

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "+(1,2)"

ans = +var1

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

PRINT*, "-(1,2)"

ans = -var1

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

Fortran 90 Course Notes File: CourseNotes.ps

200 23. Modules | Type and Procedure Packaging

PRINT*, "Type in the two INTCOMPLEX components"

CALL Get_INTCOMPLEX(var1)

PRINT*, ""

PRINT*, "This is what was typed in"

CALL Put_INTCOMPLEX(var1)

PRINT*, ""

PRINT*, "Your number/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, ""

! Intrinsics

PRINT*, "REAL(3,4)"

PRINT*, REAL(var2)

PRINT*, ""

PRINT*, "INT(3,4)"

PRINT*, INT(var2)

PRINT*, ""

PRINT*, "AIMAG(3,4)"

PRINT*, AIMAG(var2)

PRINT*, ""

PRINT*, "CONJG(3,4)"

CALL Put_INTCOMPLEX(CONJG(var2))

PRINT*, ""

PRINT*, "ABS(3,4)"

PRINT*, ABS(var2)

END PROGRAM Testo

23.8.4 More on Object Oriented Programming by J. S. Morgan

Many Fortran programmers may not realise that it is possible to implement a C++ style of object-
oriented programming (OOP) methodology using the features already extant in Fortran 90. In some
areas Fortran 90 OO programming is a little more verbose and arguably less elegant than C++ but
nevertheless OO Fortran 90 programs are quite easily implemented.

This section is based on a paper, `How to express C++ Concepts in Fortran 90'

http://www.cs.rpi.edu/ nortonc/oof90.html

by V. K. Dec yk, C. D. Norton, and B. K. Szymanski at the Jet Propulsion Laboratory, California
Institute of Technology. For those wishing to understand the essentials of OOP the article is a good
read.

September 2, 1997 University of Liverpool

23.8. User-de�ned Assignment 201

They demonstrated OO programming using a database example. Here I have used an example related
to graphics to illustrate the same principles.

Basically a class in OOP terms is a type (in Fortran 90 terms) which has PRIVATE components together
with a constructor for creating instances of a class, a destructor which destroys instances of a class,
and a series of methods which perform various manipulations of instances of the class. In the following
I have ignored destructors to keep the code fragments down to a minimum.

Thus to create a class such as a point class (for use in graphics applications) a Fortran 90 module can
be used. For example:

MODULE point_class

PRIVATE

TYPE point

PRIVATE

REAL :: x,y ! coordinates of the point

ENDTYPE point

INTERFACE new

MODULE PROCEDURE new_this

END INTERFACE

INTERFACE draw

MODULE PROCEDURE draw_this

END INTERFACE

PUBLIC point, new, draw

CONTAINS

SUBROUTINE draw_this(this)

TYPE(point) :: this

WRITE(*,*) ' Drawing point at', this%x, this%y

END SUBROUTINE draw_this

SUBROUTINE new_this(this,x,y)

TYPE(point) :: this

REAL :: x,y

this%x = x

this%y = y

END SUBROUTINE new_this

END MODULE point_class

Note that the PRIVATE statement makes all names in the module private by default. The PRIVATE

statement in the TYPE de�nition makes the components of the type private. The public statement
makes only those names which the user is allowed access to visible to the user of the module.

The use of the generic names for new, draw, etc. allows us to then use the same names for the methods

Fortran 90 Course Notes File: CourseNotes.ps

202 23. Modules | Type and Procedure Packaging

(procedures in Fortran 90 parlance) of other classes. It allows new classes to inherit the types and
procedures of other classes.

Thus a line class can be created as:

MODULE line_class

USE point_class ! inherit the public entities of point_class

PRIVATE

TYPE line

PRIVATE

TYPE(POINT) :: p1,p2

ENDTYPE line

INTERFACE new ! overrides new for this object

MODULE PROCEDURE new_this

END INTERFACE

INTERFACE draw

MODULE PROCEDURE draw_this

END INTERFACE

PUBLIC line,new,draw

CONTAINS

SUBROUTINE draw_this(this)

TYPE(line) :: this

WRITE(*,*) ' Drawing line',this

END SUBROUTINE draw_this

SUBROUTINE new_this(this,p1,p2)

TYPE(line) :: this

TYPE(point):: p1,p2

this%p1 = p1

this%p2 = p2

END SUBROUTINE new_this

END MODULE line_class

Note that the line class is a super-class of the point class. Inheritance in OO programming is usually
associated with sub-classing.

We can then write statements such as

TYPE(point) :: p1,p2

TYPE(line) :: a_line

!--- create objects

CALL new(p1, 5.,10.)

CALL new(p2,10.,20.)

September 2, 1997 University of Liverpool

23.8. User-de�ned Assignment 203

CALL new(a_line,p1,p2)

!--- draw them

CALL draw(p1)

CALL draw(a_line)

Frequently in graphics programs it is necessary to create structures consisting of objects of di�erent
classes. For example, a drawing can be modelled as an array whose elements can contain points or
lines (or other graphical objects).

To achieve this in C++ it is possible to use its so-called dynamic binding features which are accessed
via virtual functions. Fortran 90 does not support these features directly and so a little extra work is
needed.

The approach taken is to create, e�ectively, a super-type which handles the housekeeping associated
with manipulating the di�erent sub-types and keeps this hidden from the user.

Thus we create a graphic object class which can manifest itself in instances of points or lines.
Thus:

MODULE graphic_object_class

USE point_class

USE line_class

PRIVATE

TYPE graphic_object

PRIVATE

TYPE(point) ,POINTER :: pp

TYPE(line) ,POINTER :: lp

ENDTYPE graphic_object

INTERFACE create_graphic_object

MODULE PROCEDURE create_point, create_line

END INTERFACE

PUBLIC graphic_object, create_graphic_object, point, line, new, &

draw_graphic_object

CONTAINS

SUBROUTINE create_point(this,p)

TYPE(graphic_object) :: this

TYPE(point),TARGET :: p

this%pp => p

NULLIFY(this%lp)

END SUBROUTINE create_point

SUBROUTINE create_line(this,l)

TYPE(graphic_object) :: this

TYPE(line),TARGET :: l

Fortran 90 Course Notes File: CourseNotes.ps

204 23. Modules | Type and Procedure Packaging

NULLIFY(this%pp)

this%lp => l

END SUBROUTINE create_line

SUBROUTINE draw_graphic_object(this)

TYPE(graphic_object) :: this

IF(ASSOCIATED(this%pp))THEN

CALL draw(this%pp)

ELSEIF(ASSOCIATED(this%lp))THEN

CALL draw(this%lp)

ENDIF

END SUBROUTINE draw_graphic_object

END MODULE graphic_object_class

The above uses a type with pointers to the di�erent objects. When an object of a type is cre-
ated the appropriate pointer is pointed to that object. The other pointer is NULL. At runtime the
draw graphic object checks which object is being referenced and calls the appropriate routine.

Finally, putting all this together, we can now write programs such as the following.

PROGRAM use_graphic_objects

USE graphic_object_class

IMPLICIT NONE

TYPE(graphic_object) :: g1,g2

TYPE(point) :: a_point,p1,p2,c

TYPE(line) :: a_line

REAL :: x,y,r

!--- set some specific values

x = 5; y=10; r = 45

!--- create objects

CALL new(a_point,x,y) ! OO equivalent : a_point = new a_point(x,y);

CALL new(p1,3.,6.)

CALL new(p2,10.,20.)

CALL new(c ,100.,150.)

CALL new(a_line,p1,p2) ! OO equivalent : a_line = new a_line(p1,p2);

!--- create generic objects

CALL create_graphic_object(g1, a_point)

CALL create_graphic_object(g2, a_line)

!--- draw them

CALL draw_graphic_object(g1) ! OO equiv. : g1.draw_graphic_object();

CALL draw_graphic_object(g2)

September 2, 1997 University of Liverpool

23.9. Semantic Extension Modules 205

END PROGRAM use_graphic_objects

The above, I hope, has demonstrated how, in Fortran 90, by using a well disciplined methodology, and
including a disciplined naming scheme, it is possible to mimic the object oriented style of programming
to quite a large degree.

The main drawback with the above code can be seen when one tries to add an extra object type (class)
to the scheme. It is fairly straightforward to

create a new object such as a circle by writing a module using one of the other modules as a template.
However, adding in the necessary code to the use graphic objects module is much more tricky since
changes have to be made in several di�erent places and this can be error prone. This is where the
expressibility of a true object-oriented language scores over Fortran 90.

23.9 Semantic Extension Modules

In summary, modules can be de�ned which provide a semantic extensions to the language. Such
modules require:

2 a mechanism for de�ning new types.

2 a method for de�ning operations on those types.

2 a method of overloading the operations so users can use them in a natural way.

2 a way of encapsulating all these features in such a way that users can access them as a combined
set.

2 details of underlying data representation in the implementation of the associated operations to
be kept hidden.

Semantic extension allows the user to express a problem in terms of the natural objects and operations
relating to that problem. This philosophy is used in so-called object oriented programming. Fortran 90
does provide many features desirable for OOP but falls short of providing all of them.

The VARYING STRING module is a good example of semantic extension, it has has 96 module proce-
dures which are used to extend 25 generic intrinsic procedures, 6 intrinsic relational operators and the
concatenation operator. Most entities in the VARYING STRING module are PRIVATE except the type
and intrinsic entities such as the extended operators and functions.

23.9.1 Semantic Extension Example

The use of semantic extension modules is not restricted to types which are analogous to the intrinsic
types such other forms of numbers. The technique can be used to build extensions in a vast range of
areas. The following example illustrates this. It de�nes a module that provides facilities for handling
straight line segments as single objects. Lines are assumed to be de�ned by the x and y coordinates
of their endpoints. For simplicity only two functions are de�ned i.e. a function to create a line given
its endpoints, and a logical binary operator which can be used to check whether two lines intersect.
The latter is implemented as a function with two arguments of type LINE returning a logical result.
However, it would be possible to build up a complete module de�ning a wide variety of facilities for
manipulating lines.

Fortran 90 Course Notes File: CourseNotes.ps

206 23. Modules | Type and Procedure Packaging

MODULE Lines

IMPLICIT NONE

!-- Definition of derived type for lines ------------!

TYPE LINE

PRIVATE

REAL :: X1, Y1, X2, Y2

! (X1,Y1) and (X2,Y2) are the endpoints of the line

END TYPE LINE

!-- Interface Definitions for Generic names ---------!

INTERFACE Create_Line

! This Procedure creates a line between two points.

! The arguments of the function will be (X1,Y1,X2,Y2)

! and they can be either all REAL or all INTEGER.

MODULE PROCEDURE Real_Line_Constructor, Integer_Line_Constructor

END INTERFACE

INTERFACE OPERATOR(.CROSSES.)

!-- This operator tests if two lines intersect.

MODULE PROCEDURE Line_Line_Crosses

END INTERFACE

CONTAINS

!-- Definitions of specific procedure bodies --------!

FUNCTION Integer_Line_Constructor(X1,Y1,X2,Y2)

INTEGER :: X1,Y1,X2,Y2

TYPE(LINE) :: Integer_Line_Constructor

Integer_Line_Constructor%X1 = X1

Integer_Line_Constructor%Y1 = Y1

Integer_Line_Constructor%X2 = X2

Integer_Line_Constructor%Y2 = Y2

END FUNCTION Integer_Line_Constructor

FUNCTION Real_Line_Constructor(X1,Y1,X2,Y2)

REAL :: X1,Y1,X2,Y2

TYPE(LINE) :: Real_Line_Constructor

Integer_Line_Constructor%X1 = X1

Integer_Line_Constructor%Y1 = Y1

Integer_Line_Constructor%X2 = X2

Integer_Line_Constructor%Y2 = Y2

END FUNCTION Real_Line_Constructor

FUNCTION Line_Line_Crosses(L2,L2)

TYPE(LINE) :: L1, L2

LOGICAL :: Line_Line_Crosses

REAL :: X1L1, X2L1, X1L2, Y1L2, X2L2, Y2L2, m, c

REAL :: Cth, Sth

REAL, PARAMETER :: tol = 1.0E-03 ! a small number

! angle L1 makes with x-axis

IF ((L1%X1 - L1%X2) < tol) THEN

th = pi/2

September 2, 1997 University of Liverpool

23.9. Semantic Extension Modules 207

ELSE

th = ATAN ((L1%Y2-L1%Y1)/(L1%X2-L1%X1))

END IF

Cth = COS(th)

Sth = SIN(th)

! Find x coordinates of L1 in new axis system

X1L1 = L1%X1*Cth - L1%Y1*Sth

X2L1 = L1%X2*Sth - L1%Y2*Cth

! Find coords of endpoints of L2 in new axis system

X1L2 = L2%X1*Cth - L2%Y1*Sth

Y1L2 = L2%X1*Sth - L2%Y1*Cth

X2L2 = L2%X2*Cth - L2%Y2*Sth

Y2L2 = L2%X2*Sth - L2%Y2*Cth

! find m and c for equation of new line

Line_Line_Crosses = .FALSE.

IF ((X2L2 - X1L2) > tol) THEN ! lines not parallel

m = (Y2L2-Y1L2)/(X2L2-X1L2)

c = Y2L2 - m * X2L2

xcross = -c/m

! Test if crossing point is inside line segment

IF (X1L1 <= xcross .AND. X2L1 >= xcross) THEN

Line_Line_Crosses = .TRUE.

END IF

END IF

END FUNCTION Line_Line_Crosses

END MODULE Lines

The module can be used in a program such as the one below,

PROGRAM Using_Lines

USE Lines

IMPLICIT NONE

TYPE(LINE) :: L1, L2 !-- Declare two objects of type Line

! Create two lines, one using the INTEGER interface and one

! using the REAL interface

L1 = Create_Line(50,50,100,100)

L2 = Create_Line(20.4,12.56,150.0,265.75)

IF (L1.CROSSES.L2) THEN

PRINT*, 'line 1 crosses line 2'

ELSE

PRINT*, 'line 1 does not cross line 2'

END IF

END PROGRAM

We could modify the module by changing the internal representation of a line, because of the judiciously
chosen object accessibility the change in representation is totally hidden from the user,

MODULE Lines

Fortran 90 Course Notes File: CourseNotes.ps

208 23. Modules | Type and Procedure Packaging

IMPLICIT NONE

TYPE LINE

PRIVATE

REAL :: X1, Y1, SLOPE, LENGTH

! (X1,Y1) is the start of the line

END TYPE LINE

!-- Interface Definitions for Generic names ---------!

INTERFACE Create_Line

! This Procedure creates a line between two points.

! The arguments of the function will be (X1,Y1,X2,Y2)

! and they can be either all REAL or all INTEGER.

MODULE PROCEDURE Real_Line_Constructor, Integer_Line_Constructor

END INTERFACE

INTERFACE OPERATOR(.CROSSES.)

!-- This operator tests if two lines intersect.

MODULE PROCEDURE Line_Line_Crosses

END INTERFACE

CONTAINS

!-- Definitions of specific procedure bodies --------!

FUNCTION Integer_Line_Constructor(X1,Y1,X2,Y2)

INTEGER :: X1,Y1,X2,Y2

TYPE(LINE) :: Line_Constructor

Line_Constructor%X1 = X1

Line_Constructor%Y1 = Y1

Line_Constructor%slope = REAL(Y2-Y1)/(X2-X1)

Line_Constructor%length = SQRT(REAL((Y2-Y1)**2+(X2-X1)**2))

END FUNCTION Integer_Line_Constructor

FUNCTION Real_Line_Constructor(X1,Y1,X2,Y2)

REAL :: X1,Y1,X2,Y2

TYPE(LINE) :: Line_Constructor

Line_Constructor%X1 = X1

Line_Constructor%Y1 = Y1

Line_Constructor%slope = (Y2-Y1)/(X2-X1)

Line_Constructor%length = SQRT((Y2-Y1)**2+(X2-X1)**2)

END FUNCTION Real_Line_Constructor

...(rewrite of the whole module to use the new structure)

END MODULE Lines

The main program given above could use either of the two Lines modules without modi�cation.

September 2, 1997 University of Liverpool

Module 10:
Parametrised Intrinsic Types

Plus

24 Complex Data Type

This intrinsic data type has the same precision as default REAL and has comparable properties to other
intrinsic data types.

A COMPLEX object is made up from two default REAL cells and is declared as follows:

COMPLEX :: z, j, za(1:100)

Symbolic constants are expressed as a co-ordinate pair:

COMPLEX, PARAMETER :: i = (0.0,1.0)

Real-valued literals and symbolic constants, and complex valued literals and symbolic constants can
all be used in a COMPLEX object initialisation statement (for example, PARAMETER statement), but it is
not permissible to allow a constructed value containing real-valued symbolic constants as components.
So,

INTEGER, PARAMETER :: a1 = 1, a2 = 2

COMPLEX, PARAMETER :: i = (1.0,2.0)

COMPLEX, PARAMETER :: ii = i

COMPLEX, PARAMETER :: iii = a1

is OK, but

COMPLEX, PARAMETER :: iv = (a1,a2)

is no good. The CMPLX constructor cannot be used in initialisation expressions.

Complex values can be constructed elsewhere using the CMPLX intrinsic function,

z = CMPLX(x,y)

This format must be used if the RHS is not a literal constant. It is recommended that the CMPLX

intrinsic be used even when the RHS is a literal value (except in PARAMETER statements) as this makes
the program more consistent and highlights the type conversion,

z = CMPLX(3,6.9)

209

210 24. Complex Data Type

Type coercion behaves exactly as for the REAL data type, for example, if a COMPLEX literal contained
integers, (1,1), these would be promoted to REAL values before assignment to the COMPLEX variable.

Complex expressions can be used in the same way as other types

REAL :: x; COMPLEX :: a, b, c,

...

a = x*((b+c)*CMPLX(0.1,-0.1))

b = 1

The real value x will be promoted to the complex value CMPLX(x,0). b will be set to CMPLX(1.0,0).
If necessary all other data types are promoted to complex values. When a non-complex value is coerced
a 0.0 is placed in the complex part of the coordinate pair.

24.1 Complex Intrinsics

The following intrinsic are relevant to the COMPLEX data type,

2 AIMAG(z) | imaginary part of a complex number.

When supplied with a COMPLEX argument, this function returns the imaginary part, for example,
AIMAG(0.9,0.2) is 0.2.

2 REAL or DBLE | real part of a complex number.

When applied to a complex argument returns the real part of the complex value as a REAL or
DOUBLE PRECISION number. For example, DBLE(0.9,0.2) is 0.9D0.

2 CONJG(z) | conjugate of a complex number.

When applied to a complex argument returns the complex conjugate of a complex number, for
example CONJG(CMPLX(x,y)) equals CMPLX((x,-y)).

2 ABS(z) | absolute value of a complex number.

When applied to a complex argument returns the real valued absolute value, for example,
ABS(CMPLX(x,y)) equals SQRT(x**2 + y**2).

2 SIN etc. | mathematical functions.

The set of mathematical intrinsic functions is de�ned generically for complex arguments. The
result type will generally be complex.

For example, SIN(z) will calculate the complex function result as would be expected, if z =
x+ iy, then

� real part of sin(z) = sin(x) cosh(y)

� imaginary part of sin(z) = cos(x) sinh(y)

As a rule of thumb, if the mathematical function can be applied to complex arguments then it
will be implemented as such in Fortran 90.

September 2, 1997 University of Liverpool

24.1. Complex Intrinsics 211

Question 60: Complex Arithmetic | Mixing Types

Enhance your Integer Complex Arithmetic module by adding the overload sets for operations
between REAL and INTCOMPLEX operands and INTEGER and INTCOMPLEX operands, these should be
implemented for +, -, (dyadic) * and /. Clearly the result of an operation between a REAL and
INTCOMPLEX expression and an INTEGER and INTCOMPLEX expression should be of type INTCOMPLEX.
(REAL numbers should be truncated before use.)

Recall that if a is integer or real valued then,

a+ (x + yi) = (a+ x) + yi

and,

a� (x + yi) = (a� x) � yi

and,

a� (x + yi) = (a� x) + (a� y)i

and,

a

(x+ yi)
=

�
a� x

x2 + y2

�
�
�

a� y

x2 + y2

�
i

so

0:99� (3 + 4i) = 0 + 0i

and

1:0� (3 + 4i) = 3 + 4i

Demonstrate that the whole module works by USEing it in the following test program (which is avail-
able by anonymous ftp from ftp.liv.ac.uk in the directory /pub/f90courses/progs, �lename
IntegerComplex5Program.f90).

PROGRAM Testo

USE Integer_Complex_Arithmetic

IMPLICIT NONE

TYPE(INTCOMPLEX) :: var1, var2, ans

var1 = 3

PRINT*, "var1 = 3"

CALL Put_INTCOMPLEX(var1)

var1 = 5.99

PRINT*, "var1 = 5.99"

Fortran 90 Course Notes File: CourseNotes.ps

212 24. Complex Data Type

CALL Put_INTCOMPLEX(var1)

var1 = 6.01

PRINT*, "var1 = 6.01"

CALL Put_INTCOMPLEX(var1)

var1 = Setup_INTCOMPLEX(1,2)

var2 = Setup_INTCOMPLEX(3,4)

PRINT*, "(1,2)+(3,4)"

ans = var1 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)-(3,4)"

ans = var1 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/(3,4)"

ans = var2 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/(1,2)"

ans = var2 / var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)*(3,4)"

ans = var1 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)**3"

ans = var1 ** 3

CALL Put_INTCOMPLEX(ans)

PRINT*, "+(1,2)"

ans = +var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "-(1,2)"

ans = -var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "Type in the two INTCOMPLEX components"

CALL Get_INTCOMPLEX(var1)

PRINT*, "This is what was typed in"

CALL Put_INTCOMPLEX(var1)

PRINT*, "Your number/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

September 2, 1997 University of Liverpool

24.1. Complex Intrinsics 213

! Intrinsics

PRINT*, "REAL(3,4)"

PRINT*, REAL(var2)

PRINT*, "INT(3,4)"

PRINT*, INT(var2)

PRINT*, "AIMAG(3,4)"

PRINT*, AIMAG(var2)

PRINT*, "CONJG(3,4)"

CALL Put_INTCOMPLEX(CONJG(var2))

PRINT*, "ABS(3,4)"

PRINT*, ABS(var2)

! REAL | INTEGER .OP. INTCOMPLEX

PRINT*, "2+(3,4)"

ans = 2 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2-(3,4)"

ans = 2 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2*(3,4)"

ans = 2 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2/(3,4)"

ans = 2 /var2

CALL Put_INTCOMPLEX(ans)

var1 = Setup_INTCOMPLEX(1,2)

PRINT*, "4/(1,2)"

ans = 4/var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5+(3,4)"

ans = 2.5 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5-(3,4)"

ans = 2.5 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5*(3,4)"

ans = 2 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5/(3,4)"

ans = 2.5 /var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "4.7/(1,2)"

ans = 4.7/var1

Fortran 90 Course Notes File: CourseNotes.ps

214 24. Complex Data Type

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5+(3,4)"

ans = -2.5 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5-(3,4)"

ans = -2.5 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5*(3,4)"

ans = -2.5 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5/(3,4)"

ans = -2.5 /var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-4.7/(1,2)"

ans = -4.7/var1

CALL Put_INTCOMPLEX(ans)

! INTCOMPLEX .OP. INTEGER | REAL

PRINT*, "(3,4)+2"

ans = var2 + 2

CALL Put_INTCOMPLEX(ans)

PRINT*, "3,4)-2"

ans = var2-2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4) * 2"

ans = var2 * 2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/2"

ans = var2/2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/4"

ans = var1/4

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)+2.5"

ans = var2+2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)-2.5"

ans = var2-2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)*2.5"

September 2, 1997 University of Liverpool

215

ans = var2*2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/2.5"

ans = var2/2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/4.7"

ans = var1/4.7

CALL Put_INTCOMPLEX(ans)

PRINT*, "-(3,4)-2.5"

ans = -var2-2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)*(-2.5)"

ans = var2*(-2.5)

CALL Put_INTCOMPLEX(ans)

PRINT*, "0.99 * (3,4)"

ans = 0.99 *var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "1.0 * (3,4)"

ans = 1.0 *var2

CALL Put_INTCOMPLEX(ans)

END PROGRAM Testo

25 Parameterised Intrinsic Types

Fortran 77 had a problem with numeric portability, the precision (and exponent range) of a data type
on one processor would not necessarily be the same on another. For example, a default REAL may be
able to support numbers up to (say) 1068 on one machine and up to 10136 on another. One of the goals
of Fortran 90 was to overcome this portability problem. Fortran 90 implements a portable precision
selecting mechanism, it supports types which can be parameterised by a kind value (an integer). The
kind value is used to select a representation model for a type and, for numeric types, can be speci�ed
in terms of the required precision. A processor can support di�erent precisions (or representations)
of INTEGER, REAL and COMPLEX, di�erent CHARACTER sets (for example, arabic, musical notation and
cryllic script) and di�erent ways of representing LOGICAL objects. DOUBLE PRECISION does not have
di�erent precisions and its use is not recommended | use a parameterised REAL type instead.

An example of the parameterisation of an intrinsic type is,

INTEGER(KIND=1) :: ik1

REAL(4) :: rk4

The kind parameters correspond to di�ering precisions supported by the compiler (details in the compiler
manual).

Fortran 90 Course Notes File: CourseNotes.ps

216 25. Parameterised Intrinsic Types

Objects of di�erent kinds can be mixed in arithmetic expressions and rules exist for type coercion,
procedure arguments, however, must match in type and kind. There is no type coercion across
procedure boundaries.

25.1 Integer Data Type by Kind

Selecting kind parameters by an explicit integer is still not portable, the explicit integer will correspond
to di�erent precisions on di�erent machines, a mechanism is needed to select a kind value on the
basis of the desired precision. For integers this can only be achieved by using the SELECTED INT KIND

intrinsic function. For example, SELECTED INT KIND(2) returns an integer which corresponds to the
kind representation capable of expressing numbers in the range, (�102; 102). In the case of SELECT-
ED INT KIND the argument speci�es the minimum decimal exponent range for the desired model.

For example,

INTEGER :: short, medium, long, vlong

PARAMETER (short = SELECTED_INT_KIND(2), medium = SELECTED_INT_KIND(4), &

long = SELECTED_INT_KIND(10), vlong = SELECTED_INT_KIND(100))

INTEGER(short) :: a,b,c

INTEGER(medium) :: d,e,f

INTEGER(long) :: g,h,i

The above declarations specify that precision should be at least:

2 (�102; 102) | short

2 (�104; 104) | medium

2 (�1010; 1010) | long

2 (�10100; 10100) | vlong

If a model with at least the stated precision is not available then the function will return -1 and any
declaration using this kind value will give an error (at compile time).

25.2 Constants of Selected Integer Kind

Constants of a selected kind are denoted by appending underscore followed by the kind number or an
integer constant name (better):

100_2, 1238_4, 54321_long

Be very careful not to type a minus sign `-' instead of an underscore ` ' !

There are other pitfalls too, the constant

1000_short

may not be valid as KIND = short may not be able to represent numbers greater than 100. Be very
careful as the number may overow.

September 2, 1997 University of Liverpool

25.3. Real KIND Selection 217

25.3 Real KIND Selection

This works on a similar principle to integer kind selection, the intrinsic SELECTED REAL KIND can be
parameterised with two values, the minimum precision and the minimum decimal exponent range, the
corresponding kind value will be returned or, if the desired range cannot be supported, the result will
be -1.

SELECTED REAL KIND(8,9) will return a kind value that supports numbers with a precision of 8 digits
and decimal exponent range between -9 and +9.

Declarations are made in the same way as for INTEGERs, for example,

INTEGER, PARAMETER :: r1 = SELECTED_REAL_KIND(5,20), &

r2 = SELECTED_REAL_KIND(10,40)

REAL(KIND=r1) :: x, y, z

REAL(r2), PARAMETER :: diff = 100.0_r2

COMPLEX variables are speci�ed in the same way,

COMPLEX(KIND=r1) :: cinema

COMPLEX(r2) :: inferiority = (100.0_r2,99.0_r2)

Both parts of the complex number have the same numeric range.

It can also be seen how the literal kind speci�cation is achieved by the use of the underscore.

25.4 Kind Functions

It is often useful to be able to interrogate an object to see what kind parameter it has.

KIND is an intrinsic function that returns the integer which corresponds to the KIND of the argument.
The argument can be a variable or a literal. For example, KIND(a) will return the integer which
corresponds to the kind of a and KIND(20) returns the kind value chosen for the representation used
for the default integer type.

The type conversion functions, INT, NINT, REAL, DBLE, etc., have an optional KIND= argument for
specifying the representation of the result of the function, for example,

INTEGER(KIND=6) :: ik6

REAL x

INTEGER i

...

ik6 = REAL(x,KIND=6)

! or better

ik6 = REAL(x,KIND(ik6))

Retaining the representation precision is important, note the di�erence between the following two
assignments,

INTEGER ia, ib

Fortran 90 Course Notes File: CourseNotes.ps

218 25. Parameterised Intrinsic Types

REAL(KIND=6) rk6

...

rk6 = rk6 + REAL(ia,KIND=6)/REAL(ib,KIND=6)

and,

rk6 = rk6 + REAL(ia)/REAL(ib)

In the second example, the RHS operand is less accurate than in the �rst.

Question 61: Kind Functions and Available Representations

Write a program which quizzes a processor and prints out the available kinds for the INTEGER

data type. For each available kind, give the maximum exponent range that is supported. Also give
the kind number corresponding to the default INTEGER. If an exponent is too large to be supported
then SELECTED INT KIND will return -1. (You can assume that no number greater than 1032 will be
supported.)

25.5 Expression Evaluation

If the two operands of any intrinsic operation have the same type and kind, then the result also has
this type and kind. If the kinds are di�erent, then the operand with the lower range is promoted before
the operation is performed.

For example, with the following declarations

INTEGER(short) :: members, attendees

INTEGER(long) :: salaries, costs

the expression:

2 members + attendees is of kind short,

2 salaries - costs is of kind long,

2 members * costs is also of kind long.

Care must be taken to ensure the LHS is able to hold numbers returned by the RHS.

The rules for normal type coercion still hold, in mixed type expressions INTEGERs are promoted to
REALs, REALs to DOUBLE PRECISION and so on.

25.6 Logical KIND Selection

LOGICAL objects follow exactly the same principle as for numeric data types. Even though a LOGICAL

variable can only hold one of two values it can still be represented in a number of di�erent ways. For
example,

September 2, 1997 University of Liverpool

25.7. Character KIND Selection 219

LOGICAL(KIND=4) :: yorn = .TRUE._4

LOGICAL(KIND=1), DIMENSION(10) :: mask

IF (yorn .EQ. LOGICAL(mask(1),KIND(yorn)))

KIND=1 could mean that only one byte is used to store each element of mask which would conserve
space. Must refer to the compiler manual.

1 byte

4 bytesLOGICAL(KIND=4)

LOGICAL(KIND=1)

Figure 39: Possible Sizes of Di�erent Logical Kind Variables

There is no SELECTED LOGICAL KIND intrinsic, however, the KIND intrinsic can be used to inquire
about the representation and, as demonstrated above, the LOGICAL intrinsic, which has an optional
KIND= argument, can be used to convert between representations.

25.7 Character KIND Selection

Every compiler must support at least one character set which must include all the Fortran characters.
A compiler may also support other character sets:

INTEGER, PARAMETER :: greek = 1

CHARACTER(KIND=greek) :: zeus, athena ! greek

CHARACTER(KIND=2,LEN=25) :: mohammed ! arabic

Normal operations apply individually but characters of di�erent kinds cannot be mixed.

For example,

print*, zeus//athena ! OK

print*, mohammed//athena ! illegal

print*, CHAR(ICHAR(zeus),greek)

Recall that CHAR gives the character in the given position in the collating sequence. ICHAR and CHAR

must be used when converting between character sets which means that only one character at a time
can be converted.

Literals can also be speci�ed:

greek "����"

Notice how the kind is speci�ed �rst | this is so the compiler has advanced knowledge that some
`funny' characters are about to appear and is able to warn the lexical analyser of this fact.

Fortran 90 Course Notes File: CourseNotes.ps

220 25. Parameterised Intrinsic Types

25.8 Kinds and Procedure Arguments

Dummy and actual arguments must match exactly in kind, type and rank (this is how generic overloads
are resolved). In the following example it is assumed that the kind parameters are initialised in a module
(good practice),

SUBROUTINE subbie(a,b,c)

USE kind_defs

REAL(r2), INTENT(IN) :: a, c

REAL(r1), INTENT(OUT) :: b

...

Any dummy arguments to an invocation of subbie must have matching arguments, for example,

USE kind_defs

REAL(r1) :: arg2

REAL(r2) :: arg3

...

CALL subbie(1.0_r2, arg2, arg3)

Using 1.0 instead of 1.0 r2 will not be correct on all compilers. The default kind always corresponds
to a speci�c kind. Which kind it corresponds to depends on the compiler, this means that in the
example, on one processor 1.0 may be identical (and have identical kind value) to 1.0 r2 but on
another processor it may be equivalent to 1.0 r1, this would mean that the above program would
compile OK sometimes (the �rst case) and other times would fail owing to the procedure arguments
not matching in type, rank and kind. A truly portable program should NOT use intrinsic default types!

25.9 Kinds and Generic Interfaces

Note that if a procedure is de�ned with an argument of default intrinsic type then it is also de�ned for
one parameterised instance of that type. Consider,

...

INTERFACE blob1

MODULE PROCEDURE a

MODULE PROCEDURE b

END INTERFACE ! blob1

...

CONTAINS

...

SUBROUTINE a(i)

INTEGER(KIND=1), INTENT(IN) :: i

...

END SUBROUTINE a

SUBROUTINE b(i)

INTEGER(KIND=2), INTENT(IN) :: i

...

END SUBROUTINE b

here both procedures have a unique interface as the kinds of the two dummy arguments are di�erent.
Consider,

September 2, 1997 University of Liverpool

25.9. Kinds and Generic Interfaces 221

...

INTERFACE blob2

MODULE PROCEDURE a

MODULE PROCEDURE c

END INTERFACE ! blob2

...

CONTAINS

SUBROUTINE a(i)

INTEGER(KIND=1), INTENT(IN) :: i

...

END SUBROUTINE a

SUBROUTINE c(i)

INTEGER, INTENT(IN) :: i

...

END SUBROUTINE c

here, if the default integer type corresponds to a kind value of 2 then the generic interfaces for blob1
and blob2 are the same, however, if the default integer type corresponds to a kind value of 1, the
module will be in error because the overload set is non unique. In summary, default intrinsic types
should not appear in generic interface speci�cations if any parameterised types appear as arguments
to other procedures in the overloads set. This will ensure that the program is more portable.

Question 62: Di�erent precision INTCOMPLEX

Enhance your Integer Complex Arithmetic module by converting the code to a portable sys-
tem which can represent INTCOMPLEX values, say in the range (�109; 109).
Expressions containing INTCOMPLEXs may involve integers of two kinds of INTEGERs, (short int and
long int which correspond to ranges of (�104; 104) and (�109; 109) respectively) so the overload
set for numeric operators must be extended. There is still only one kind of REAL and COMPLEX data
type.

Modify your program so that Setup INTCOMPLEX is a generic function which constructs values for all
combinations of short int and long int.

Demonstrate that the whole module works by USEing it in the following test program (which is avail-
able by anonymous ftp from ftp.liv.ac.uk in the directory /pub/f90courses/progs, �lename
IntegerComplex6Program.f90.

PROGRAM Testo

USE Integer_Complex_Arithmetic

IMPLICIT NONE

TYPE(INTCOMPLEX) :: var1, var2, ans

var1 = 3

PRINT*, "var1 = 3"

CALL Put_INTCOMPLEX(var1)

var1 = 5.99

PRINT*, "var1 = 5.99"

CALL Put_INTCOMPLEX(var1)

var1 = 6.01

Fortran 90 Course Notes File: CourseNotes.ps

222 25. Parameterised Intrinsic Types

PRINT*, "var1 = 6.01"

CALL Put_INTCOMPLEX(var1)

var1 = Setup_INTCOMPLEX(1,2)

var2 = Setup_INTCOMPLEX(3,4)

PRINT*, "(1,2)+(3,4)"

ans = var1 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)-(3,4)"

ans = var1 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/(3,4)"

ans = var2 / var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/(1,2)"

ans = var2 / var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)*(3,4)"

ans = var1 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)**3"

ans = var1 ** 3

CALL Put_INTCOMPLEX(ans)

PRINT*, "+(1,2)"

ans = +var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "-(1,2)"

ans = -var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "Type in the two INTCOMPLEX components"

CALL Get_INTCOMPLEX(var1)

PRINT*, "This is what was typed in"

CALL Put_INTCOMPLEX(var1)

PRINT*, "Your number/(3,4)"

ans = var1 / var2

CALL Put_INTCOMPLEX(ans)

! Intrinsics

PRINT*, "REAL(3,4)"

September 2, 1997 University of Liverpool

25.9. Kinds and Generic Interfaces 223

PRINT*, REAL(var2)

PRINT*, "INT(3,4)"

PRINT*, INT(var2)

PRINT*, "AIMAG(3,4)"

PRINT*, AIMAG(var2)

PRINT*, "CONJG(3,4)"

CALL Put_INTCOMPLEX(CONJG(var2))

PRINT*, "ABS(3,4)"

PRINT*, ABS(var2)

! REAL | INTEGER .OP. INTCOMPLEX

PRINT*, "2+(3,4)"

ans = 2 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2-(3,4)"

ans = 2 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2*(3,4)"

ans = 2 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2/(3,4)"

ans = 2 /var2

CALL Put_INTCOMPLEX(ans)

var1 = Setup_INTCOMPLEX(1,2)

PRINT*, "4/(1,2)"

ans = 4/var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5+(3,4)"

ans = 2.5 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5-(3,4)"

ans = 2.5 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5*(3,4)"

ans = 2 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "2.5/(3,4)"

ans = 2.5 /var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "4.7/(1,2)"

ans = 4.7/var1

CALL Put_INTCOMPLEX(ans)

Fortran 90 Course Notes File: CourseNotes.ps

224 25. Parameterised Intrinsic Types

PRINT*, "-2.5+(3,4)"

ans = -2.5 + var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5-(3,4)"

ans = -2.5 - var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5*(3,4)"

ans = -2.5 * var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-2.5/(3,4)"

ans = -2.5 /var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "-4.7/(1,2)"

ans = -4.7/var1

CALL Put_INTCOMPLEX(ans)

! INTCOMPLEX .OP. INTEGER | REAL

PRINT*, "(3,4)+2"

ans = var2 + 2

CALL Put_INTCOMPLEX(ans)

PRINT*, "3,4)-2"

ans = var2-2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4) * 2"

ans = var2 * 2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)/2"

ans = var2/2

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/4"

ans = var1/4

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)+2.5"

ans = var2+2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)-2.5"

ans = var2-2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)*2.5"

ans = var2*2.5

CALL Put_INTCOMPLEX(ans)

September 2, 1997 University of Liverpool

25.9. Kinds and Generic Interfaces 225

PRINT*, "(3,4)/2.5"

ans = var2/2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(1,2)/4.7"

ans = var1/4.7

CALL Put_INTCOMPLEX(ans)

PRINT*, "-(3,4)-2.5"

ans = -var2-2.5

CALL Put_INTCOMPLEX(ans)

PRINT*, "(3,4)*(-2.5)"

ans = var2*(-2.5)

CALL Put_INTCOMPLEX(ans)

PRINT*, "0.99 * (3,4)"

ans = 0.99 *var2

CALL Put_INTCOMPLEX(ans)

PRINT*, "1.0 * (3,4)"

ans = 1.0 *var2

CALL Put_INTCOMPLEX(ans)

! Extended precision

var1 = Setup_INTCOMPLEX(3_short_int,1_long_int)

PRINT*, "var1 = Setup_INTCOMPLEX(3_short_int,1_long_int)"

CALL Put_INTCOMPLEX(var1)

var1 = Setup_INTCOMPLEX(3_short_int,1_short_int)

PRINT*, "var1 = Setup_INTCOMPLEX(3_short_int,1_short_int)"

CALL Put_INTCOMPLEX(var1)

var1 = Setup_INTCOMPLEX(3_long_int,1_short_int)

PRINT*, "var1 = Setup_INTCOMPLEX(3_long_int,1_short_int)"

CALL Put_INTCOMPLEX(var1)

PRINT*, "var1 = Setup_INTCOMPLEX(3_long_int,1_long_int)"

var1 = Setup_INTCOMPLEX(3_long_int,1_long_int)

CALL Put_INTCOMPLEX(var1)

PRINT*, "200_short_int * Setup_INTCOMPLEX(3_long_int,1_long_int)"

ans = 200_short_int * var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "Setup_INTCOMPLEX(3_long_int,1_long_int) - 20_short_int"

ans = var1 - 20_short_int

CALL Put_INTCOMPLEX(ans)

PRINT*, "Setup_INTCOMPLEX(3_long_int,1_long_int) ** 200_short_int"

ans = var1 ** 6_short_int

CALL Put_INTCOMPLEX(ans)

Fortran 90 Course Notes File: CourseNotes.ps

226 26. More Intrinsics

PRINT*, "var ** 6_long_int"

ans = var1 ** 6_long_int

CALL Put_INTCOMPLEX(ans)

PRINT*, "var1 = Setup_INTCOMPLEX(30000_long_int,10000_long_int)"

var1 = Setup_INTCOMPLEX(30000_long_int,10000_long_int)

CALL Put_INTCOMPLEX(var1)

PRINT*, "400_long_int / Setup_INTCOMPLEX(30000_long_int,10000_long_int)"

ans = 400_long_int / var1

CALL Put_INTCOMPLEX(ans)

PRINT*, "Setup_INTCOMPLEX(30000_long_int,10000_long_int) / 4000000"

ans = var1 / 4000000_long_int

CALL Put_INTCOMPLEX(ans)

END PROGRAM Testo

26 More Intrinsics

26.1 Bit Manipulation Intrinsic Functions

Summary,

BTEST(i,pos) bit testing
IAND(i,j) AND
IBCLR(i,pos) clear bit
IBITS(i,pos,len) bit extraction
IBSET(i,pos) set bit
IEOR(i,j) exclusive OR
IOR(i,j) inclusive OR
ISHFT(i,shft) logical shift
ISHFTC(i,shft) circular shift
NOT(i) complement
MVBITS(ifr,ifrpos, len,ito,itopos) move bits (SUBROUTINE)

Variables used as bit arguments must be INTEGER valued. The model for bit representation is that of
an integer so 0 would have a bit representation of all 0's, 1 would have all zeros except for a 1 in the
last position (position zero) (00...0001). The positions are numbered from zero and go from right
to left (just like regular binary numbers.)

The model for bit representation is that of an unsigned integer, for example,

The number of bits in a single variable depends on the compiler | parameterised integers should be
used to �x the number of bytes. The intrinsic BIT SIZE gives the number of bits in a variable.

Here is a summary of the bit intrinsics and examples of their use; assume that A has the value 5

(00...000101) and B the value 3 (00...000011) in the following:

2 BTEST | bit value.

September 2, 1997 University of Liverpool

26.2. Array Construction Intrinsics 227

1010 0

0 0 0 0 0 value = 0

value = 5

023s-1

s-1 3 2 1 0

1

..

..

1 1000 value = 3

s-1 3 2 1 0

Figure 40: Visualisation of Bit Variables

.TRUE. if the bit in position pos of INTEGER i is 1, .FALSE. otherwise, for example, BTEST(A,0)
has value .TRUE. and BTEST(A,1) is .FALSE..

2 IAND | bitwise .AND..

The two arguments are INTEGER the result is an INTEGER obtained by doing a logical .AND. on
each bit of arguments, for example, IAND(A,B) is 1 (00...000001).

2 IBCLR | bit clear.

Set bit in position pos to 0, for example, IBCLR(A,0) is 4 (00...000100).

2 IBITS | extract sequence of bits.

IBITS(A,1,2) is 2 (10 in binary) or e�ectively 00..00010.

2 IBSET | set bit

Set bit in position pos to 1, for example, IBSET(A,1) is 7 (00...000111).

2 IEOR, IOR | bitwise .OR. (exclusive or inclusive).

For example, IEOR(A,B) is 6 (00...000110) and IOR(A,B) is 7 (00...000111).

2 ISHFT, ISHFTC | logical and circular shift.

Shift the bits shft positions left (if shft is negative move bits to the right). ISHFT �lls
vacated positions by zeros ISHFTC wraps around. for example, ISHFT(A,1) is 00...001010

(10), ISHFT(A,-1) is 00...000010 (2). ISHFTC(A,1) is 00...001010 (10), ISHFTC(A,-1)
is 10...000010 (-2147483646).

2 NOT | compliment of whole word.

NOT(A) is 11...111010 (-6).

2 MVBITS (SUBROUTINE) | copy a sequence of bits between objects.

For example MVBITS(A,1,2,B,0) says \move 2 bits beginning at position 1 in A to B position
0" (the bits are counted from right to left), this gives B the value 00...000010 (2).

26.2 Array Construction Intrinsics

There are four intrinsics in this class:

Fortran 90 Course Notes File: CourseNotes.ps

228 26. More Intrinsics

2 MERGE(TSOURCE,FSOURCE,MASK)

This function has the e�ect of merging two arrays under a mask, whether to include TSOURCE

or FSOURCE in the result depends on LOGICAL array MASK; where it is .TRUE. the element from
TSOURCE is included otherwise the element from FSOURCE is used instead.

2 SPREAD(SOURCE,DIM,NCOPIES)

This function replicates an array by adding NCOPIES along a dimension. The e�ect is analogous
to taking a single page and replicating it to form a book with multiple copies of the same page.
The result has one more dimension that the source array. SPREAD is useful during vectorisation
of DO-loops.

2 PACK(SOURCE,MASK[,VECTOR])

This function packs an arbitrary dimensioned array into a one-dimensional vector under a mask.
PACK is useful for compressing data.

2 UNPACK(VECTOR,MASK,FIELD)

This function unpacks a vector into an array under a mask, UNPACK is a complementary function
to PACK and is therefore useful for uncompressing data.

26.2.1 MERGE Intrinsic

MERGE(TSOURCE,FSOURCE,MASK)

This function merges two arrays under mask control. TSOURCE, FSOURCE and MASK must all conform
and the result is TSOURCE where MASK is .TRUE. and FSOURCE where it is .FALSE..

Consider,

INTEGER, DIMENSION(2,3) :: TSOURCE, FSOURCE

LOGICAL, DIMENSION(2,3) :: MASK

LOGICAL, PARAMETER :: T = .TRUE.

LOGICAL, PARAMETER :: F = .FALSE.

TSOURCE = RESHAPE((/1,3,5,7,9,11/), (/2,3/))

FSOURCE = RESHAPE((/0,2,4,6,8,10/), (/2,3/))

MASK = RESHAPE((/T,F,T,F,F,T/), (/2,3/))

Now, as

MASK =

�
T T F
F F T

�

the highlighted elements are selected from the two source arrays,

TSOURCE =

1 5 9

3 7 11

!

and

FSOURCE =

0 4 8

2 6 10

!

September 2, 1997 University of Liverpool

26.2. Array Construction Intrinsics 229

thus

MERGE(TSOURCE; FSOURCE; MASK) =

�
1 5 8
2 6 11

�

26.2.2 SPREAD Intrinsic

SPREAD(SOURCE,DIM,NCOPIES)

This function replicates an array by adding NCOPIES of in the direction of a stated dimension.

For example, if A is (/5, 7/), then

SPREAD(A; 2; 4) =

�
5 5 5 5
7 7 7 7

�

As DIM= 2 the vector (/ 5, 7/) is spread along dimension 2 (the direction of a row).

SPREAD(A; 1; 4) =

0
BB@

5 7
5 7
5 7
5 7

1
CCA

In this case DIM= 1 so the vector (/ 5, 7/) is spread along dimension 1 (the direction of a column).

A good use for this intrinsic is during vectorisation when, say, a doubly nested DO loop is combining a
vector with each column of an array at the centre of the loop, the statement can be rewritten as a 2D
array assignment by creating a copy of the vector for each column of the array. For example,

DO i = 1,100

DO j = 1,100

A(i,j) = B(i)*2

END DO

END DO

can be transformed to

A(1:100,1:100) = SPREAD(B(:),2,100)*2

which exploits Fortran 90 array syntax.

26.2.3 PACK Intrinsic

PACK(SOURCE,MASK[,VECTOR])

This function packs a arbitrary shaped array into a one-dimensional array under a mask. VECTOR, if
present, must be 1-D and must be of same type and kind as SOURCE.

Element i of the result is the element of SOURCE that corresponds to the ith .TRUE. element of MASK,
(in array element order,) for i = 1; :::; t, where t is the number .TRUE. elements in MASK.

Fortran 90 Course Notes File: CourseNotes.ps

230 26. More Intrinsics

If VECTOR is present, the result size is that of VECTOR; otherwise, the result size is t unless MASK is
scalar with the value .TRUE. in which case the result size is the size of SOURCE. If VECTOR has size
n > t, element i of the result has the value VECTOR(i), for i = t+ 1; :::; n.

For example, if

MASK =

�
T T F
F F T

�

and

A =

�
1 5 9
3 7 11

�

then

2 PACK(A,MASK) is (/1, 5, 11/);

VECTOR is absent meaning that size of the result is the number of .TRUE. elements in MASK, 3.
The elements of A which correspond to the .TRUE. elements of MASK are

A =

1 5 9

3 7 11

!

It can be seen that the highlighted elements are taken from A in array element order and packed
into the result.

2 PACK(A,MASK,(/3,4,5,6/)) is (/1, 5, 11, 6/).

Here VECTOR is present so the result is of size 4. The �rst t elements of the results are as
before corresponding to the .TRUE. elements of the mask. The remaining values are taken
from VECTOR the 4th value of the result is the t+ 1th element of VECTOR, 6. Hence the result
(/1, 5, 11, 6/).

2 PACK(A,.TRUE.,(/1,2,3,4,5,6,7,8,9/)) is (/1,3,5,7,9,11,7,8,9/).

Here the mask is scalar so the �rst 6 elements are A and the rest from the end of VECTOR.

26.2.4 UNPACK Intrinsic

UNPACK(VECTOR,MASK,FIELD)

This function unpacks a vector into an array under a mask. FIELD, must conform to MASK and and
must be of same type and kind as VECTOR. The result is the same shape as MASK.

If

FIELD =

�
9 5 1
7 7 3

�
and

MASK =

�
T T F
F F T

�

then

UNPACK((=6; 5; 4=); MASK; FIELD) =

6 5 1

7 7 4

!

September 2, 1997 University of Liverpool

26.3. TRANSFER Intrinsic 231

The highlighted elements originate from VECTOR and correspond to the .TRUE. values of MASK, the
other values are from the corresponding elements of FIELD.

Also

UNPACK((=3; 2; 1=); :NOT:MASK; FIELD) =

9 5 1

3 2 3

!
(3)

again highlighted elements correspond to the .TRUE. values of NOTMASK, the other values are from the
corresponding elements of FIELD.

26.3 TRANSFER Intrinsic

Most languages have a facility to change the type of an area of storage, in Fortran 77 people used
EQUIVALENCE. Fortran 90 adds a di�erent facility. The TRANSFER intrinsic converts (not coerces) a
physical representation between data types; it is a retyping facility. The intrinsic takes the bit pattern
of the underlying representation and interprets it as a di�erent type. The intrinsic has the following
syntax:

TRANSFER(SOURCE,MOLD)

where SOURCE is the object to be retyped and MOLD is an object of the target type. For example,

REAL, DIMENSION(10) :: A, AA

INTEGER, DIMENSION(20) :: B

COMPLEX, DIMENSION(5) :: C

...

A = TRANSFER(B, (/ 0.0 /))

AA = TRANSFER(B, 0.0)

C = TRANSFER(B, (/ (0.0,0.0) /))

...

The same bit pattern is used for each variable type:

0 0 0..

100

1 1

1 0

B

1010..0

AA

A

.. 0 1 0 1

C

INTEGER

REAL

REAL

COMPLEX ..

..

Figure 41: Visualisation of the TRANSFER Intrinsic

Fortran 90 Course Notes File: CourseNotes.ps

232 26. More Intrinsics

the variable will take on the number de�ned by its bit pattern.

The above example highlights the following points:

2 SOURCE can be array or scalar valued of any type,

2 MOLD can be array or scalar valued of any type and speci�es the result type (which is the same
shape as SOURCE),

2 in the example there is a big di�erence between MOLD being array valued (/ 0.0 /) and scalar
0.0

� the result of TRANSFER(B, (/ 0.0 /)) is an array, this is assigned element-by-element to
A

� the result of TRANSFER(B, 0.0) is a scalar, this scalar is assigned to every element of AA.
(The �rst half of B(1) (4 bytes) is interpreted as a REAL number.)

2 (/ (0.0,0.0) /) represents an array valued COMPLEX variable.

September 2, 1997 University of Liverpool

Module 11:
Odds and Ends

27 Input / Output

Fortran 90 has a wealth of I/O, too much to cover here. It has many statements, (for example, READ,
WRITE, OPEN, CLOSE, REWIND and BACKSPACE) built in to the language and also has very powerful
formatting commands for `pretty printing' or formatted output.

So far, all examples have performed I/O with a terminal. Fortran 90 allows a number of di�erent
streams (�les) to be connected to a program for both reading and writing. In Fortran 90 a �le is
connected to a logical unit denoted by a number. This number must be positive and is often limited
to be between 1 and 100, the exact number will be given in the compiler manual. Each logical unit
can have many properties, for example,

2 �le | the name of the �le connected to the unit,

The name is speci�ed in the OPEN statement.

2 action | read, write, read and write,

If a �le is opened for one sort of action and another is attempted then an error will be generated,
for example, it is not permissible to write to a �le opened solely for reading.

2 status | old, new, replace, etc.

similar to above, if we open a new �le but the �le already exists then an error results.

2 access method | sequential, direct,

� sequential | is `normal' access, each write / read causes a pointer to move down the �le,
the next line which is written / read appears after the previous line.

� direct | each line is accessed by a number (a record number) which must be speci�ed in
the read / write statement made.

The maximum number of �les which can be open at any one time will also be speci�ed in the compiler
manual.

27.1 OPEN Statement

The OPEN statement is used to connect a named �le to a logical unit. It is often possible to pre-connect
a �le before the program has begun, if this is the case then there is no need for an OPEN statement,
however, there are many default I/O settings many of which are processor dependent. Its good practice
not to rely on defaults but to specify exactly what is required in an explicit OPEN statement. This will
make the program more portable.

The syntax is

233

234 27. Input / Output

OPEN([UNIT=]< integer>, FILE=<�lename>, ERR=< label>, &
STATUS=< status>, ACCESS=<method>, ACTION=<mode>, RECL=< int-expr>)

where,

2 UNIT=< integer> speci�es a numeric reference for the named �le. The number must be one
that is not currently in use.

2 FILE=< �lename> gives the �lename to be associated with the logical unit. The name must
match exactly with the actual �le, sometimes this means that the �lename needs to contain a
speci�c number of blanks.

2 ERR=< label> speci�es a numeric label where control should be transferred if there is an error
opening the named �le.

2 STATUS=< status> speci�es the status of the named �le, the status may be one of the following,

� 'OLD', | �le exists.

� 'NEW', | �le does not exist.

� 'REPLACE' | �le will be overwritten.

� 'SCRATCH' | �le is temporary and will be deleted when closed.

� 'UNKNOWN' | unknown.

2 ACCESS=<method> speci�es the access method,

� 'DIRECT' | the �le consists of tagged records accessed by an ID number, in this case the
record length must be speci�ed (RECL). Individual records can be speci�ed and updated
without altering the rest of the �le.

� 'SEQUENTIAL' | the �le is written / read (sequentially) line by line.

2 ACTION=<mode> speci�es what can be done to the �le, the mode may be one of the following,

� 'READ',| open for reading.

� 'WRITE'| open for writing.

� 'READWRITE' | open for both reading and writing.

There are other less important speci�ers which are not covered here.

There now follows an example of use,

OPEN(17,FILE='output.dat',ERR=10, STATUS='REPLACE', &

ACCESS='SEQUENTIAL',ACTION='WRITE')

A �le output.dat is opened for writing, it is connected to logical unit number 17. The �le is accessed
on a line by line basis and already exists but is to be replaced. The label 10 must pertain to a valid
executable statement.

OPEN(14,FILE='input.dat',ERR=10, STATUS='OLD', RECL=iexp, &

ACCESS='DIRECT',ACTION='READ')

Here a �le is opened for input only on unit 14. The �le is directly accessed and (clearly) already exists.

September 2, 1997 University of Liverpool

27.2. READ Statement 235

27.2 READ Statement

Syntax (not all the speci�ers can be used at the same time,)

READ([UNIT=]<unit>, [FMT=]< format>, IOSTAT=< int-variable>, ERR=< label>, &
END=< label>, EOR=< label>, ADVANCE=<advance-mode>, REC=< int-expr>, &
SIZE=<num-chars>) < output-list>

where

2 UNIT=< unit> is a valid logical unit number or * for the default (standard) output, if it is the
�rst �eld then the speci�er is optional.

2 FMT=< format> is a string of formatting characters, a valid FORMAT statement label or a * for
free format. If this is the second �eld then the speci�er is optional.

2 IOSTAT=< int-variable> speci�es an integer variable to hold a return code, as usual, zero means
no error.

2 < label> in ERR= is a valid label to where control jumps if there is a read error.

2 < label> in END= is a valid label to where control jumps if an end-of-�le is encountered, this can
only be present in a READ statement.

2 < advance-mode> speci�es whether each READ should start a new record or not, setting the
speci�er to 'NO' initiates non-advancing I/O. The default is 'YES'. If non-advancing I/O is used
then the �le must be connected for sequential access and the format must be explicitly stated.

2 EOR will jump to the speci�ed label if an end-of-record is encountered. This can only be present
in a READ statement and only if ADVANCE='NO' is also present.

2 REC=< int-expr> is the record number for direct access.

2 the SIZE speci�er is used in conjunction with an integer variable, in this case nch. The variable
will hold the number of characters read. This can only be present in a READ statement and only
if ADVANCE='NO' is also present.

Consider,

READ(14,FMT='(3(F10.7,1x))',REC=iexp) a,b,c

here, the record speci�ed by the integer iexp is read | this record should contain 3 real numbers
separated by a space with 10 column and 7 decimal places. The values will be placed in a, b and c.

READ(*,'(A)',ADVANCE='NO',EOR=12,SIZE=nch) str

Since non-advancing output has been speci�ed, the cursor will remain on the same line as the string is
read. Under normal circumstances (default advancing output) the cursor would be positioned at the
start of the next line. Note the explicit format descriptor. SIZE reurns the length of the string and
EOR= speci�es an destination if an end-of-record is encountered.

Fortran 90 Course Notes File: CourseNotes.ps

236 27. Input / Output

27.3 WRITE Statement

READ and WRITE can be interchanged in the following, (not all the speci�ers can be used at the same
time,)

WRITE([UNIT=]<unit>, [FMT=]< format>, IOSTAT=< int-variable>, ERR=< label>, &
ADVANCE=<advance-mode>, REC=< int-expr>) < output-list>

where

2 UNIT=<unit> is a valid logical unit number or * for the default (standard) output. If it is the
�rst �eld then the speci�er is optional.

2 FMT=< format> is a string of formatting characters, a valid FORMAT statement label or a * for
free format. If this is the second �eld then the speci�er is optional.

2 IOSTAT=< int-variable> speci�es an integer variable to hold a return code, as usual, zero means
no error.

2 < label> in ERR= is a valid label to where control jumps if there is an WRITE error.

2 ADVANCE=< advance-mode > speci�es whether each WRITE should start a new record or not.
setting the speci�er, (< advance-mode>,) to 'NO' initiates non-advancing I/O. The default is
'YES'. If non-advancing I/O is used then the �le must be connected for sequential access and
the format must be explicitly stated.

2 REC=< int-expr> is the record number for direct access.

Consider,

WRITE(17,FMT='(I4)',IOSTAT=istat,ERR=10, END=11,EOR=12) ival

here, '(I4)' means INTEGER with 4 digits. the labels 10, 11 and 12 are statements where control
can jump on an I / O exception. ival is an INTEGER variable whose value is written out.

WRITE(*,'(A)',ADVANCE='NO') 'Input : '

Since non-advancing output has been speci�ed, the cursor will remain on the same line as the string
'Input : ', under normal circumstances (default advancing output) the cursor would be positioned
at the start of the next line. Note the explicit format descriptor.

See later for a more detailed explanation of the format edit descriptors.

27.4 FORMAT Statement / FMT= Speci�er

The FMT= speci�er in a READ or WRITE statement can give either a line number of a FORMAT statement,
an actual format string or a *.

Consider,

WRITE(17,FMT='(2X,2I4,1X,''name '',A7)')i,j,str

September 2, 1997 University of Liverpool

27.5. Edit Descriptors 237

This writes out to the �le output.dat the three variables i, j and str according to the speci�ed
format, \2 spaces, (2X), 2 integer valued objects of 4 digits with no gaps, (2I4), one space, (1X),
the string 'name ' and then 7 letters of a character object, (A7)". The variables are taken from the
I/O list at the end of the line. Note the double single quotes (escaped quote) around name. A single
" could have been used here instead.

Consider,

READ(14,*) x,y

This reads two values from input.dat using free format and assigns the values to x and y.

Further consider,

WRITE(*,FMT=10) a,b

10 FORMAT('vals',2(F15.6,2X))

The WRITE statement uses the format speci�ed in statement 10 to write to the standard output channel.
The format is \2 instances of: a real valued object spanning 15 columns with an accuracy of 6,
decimal places, (F15.6), followed by two spaces (2X)".

Given,

WRITE(*,FMT=10) -1.05133, 333356.0

WRITE(17,FMT='(2X,2I4,1X,''name '',A7)')11, -195, 'Philip'

10 FORMAT('vals',2(F15.6,2X))

the following is written,

11-195 name Philip

-1.051330 333356.000000

27.5 Edit Descriptors

Fortran contains a large number of output edit descriptors which means that very complex I/O patterns
can be speci�ed, it is only intended that a summary be presented here. Any good textbook will
elaborate:

Editor Meaning
Iw w chars of integer data,
Fw.d w chars of real data (d dec. pl.),
Ew.d w chars of real data (d dec. pl.),
Lw w chars of logical data,
A[w] [w chars of] CHARACTER data,
nX skip n chars (n spaces),

Where,

2 w determines the number of the total number of characters (column width) that the data spans,
(on output if there are insu�cient columns for the data then numeric data will not (cannot) be
printed, CHARACTER data will be truncated).

Fortran 90 Course Notes File: CourseNotes.ps

238 27. Input / Output

2 d speci�es the number of decimal places that the data contains and is contained in the total
number of characters. The number will be rounded (not truncated) to the desired accuracy.

and,

2 I speci�es that the data is of INTEGER type.

2 E writes REAL using exponent form, 1.000E+00.

2 F uses `decimal point' form, 1.000.

2 for F and E the sign is included in the total number of characters, by default plus signs are not
output.

2 L speci�es LOGICAL data. .TRUE. and .FALSE. are output as a single character T or F. If w is
greater that one them the single character is padded to the left with blanks.

2 A speci�es CHARACTER data. If w is speci�ed strings which are too long (more than w characters)
will be truncated. If w is not speci�ed any length of string is appropriate.

2 X skips the speci�ed number of characters (n blanks are output).

Descriptors or groups of descriptors can be repeated by pre�xing or parenthesesing and pre�xing with
the number of repeats, for example, I4 can be repeated twice by specifying 2I4 and I4,1X can be
repeated twice by specifying 2(I4,1X).

Many of the above edit descriptors can be demonstrated:

WRITE(*,FMT='(2X,2(I4,1X),''name '',A4,F13.5,1X,E13.5)') &

77778,3,'ABCDEFGHI',14.45,14.5666666

gives

bb****bbbb3bnamebABCDbbbbb14.45000bbb0.14567E+02

where the b signi�es a blank! In the above example, the �rst INTEGER is unable to be written as the
number is too long and the last REAL number is rounded to �t into the spaces available. The string is
truncated to �t into the space available. A READ statement could use the same format editor.

Type coercion is not performed so INTEGERs cannot be written out as REALs.

27.6 Other I/O Statements

2 CLOSE unattaches the unit number speci�ed in the statement. This should always be used to
add an end of �le mark at the closure point. It is an error to close a �le that is not open.

2 REWIND simply puts the �le pointer back to the start.

2 BACKSPACE moves the �le pointer is moved back one record, however, it often puts the �le
pointer back to the start, and then fast forwards.

2 ENDFILE forces an end-of-�le to be written into the �le but the �le remains open.

September 2, 1997 University of Liverpool

27.6. Other I/O Statements 239

The above statements have other speci�ers such as IOSTAT,

For example,

REWIND (UNIT=14)

BACKSPACE (UNIT=17)

ENDFILE (17)

CLOSE (17, IOSTAT=ival)

Question 63: File IO

Write a program to open a new sequential �le on unit 4 called marks.dat. The program should
then read a student's name followed by his/her marks for four exams from the keyboard (the default
unit) and write these to the �le on a single line. Repeat the read/write process until a student with
the name END is entered. Close the output �le.

Question 64: Formatted IO

Given the statement:

READ(*,'(F10.3,A2,L10)') A,C,L

what would the variables A (a real), C (a character of length 2), L (a logical) contain when given the
following input? (Note: b signi�ed a blank space.)

1. bbb5.34bbbNOb.TRUE.

2. 5.34bbbbbbYbbFbbbbb

3. b6bbbbbb3211bbbbbbT

4. bbbbbbbbbbbbbbbbbbF

Question 65: Formatted IO

Give the formats which would be suitable for use with the statements,

REAL :: A

CHARACTER(LEN=12) :: B

INTEGER :: C

READ(*,FORM) A,B,C

if the record to be read is, (b is blank),

bbb354bbINTRODUCTORYb1993

and values to be assigned to A, B and C are given in the following table:

Fortran 90 Course Notes File: CourseNotes.ps

240 28. External Procedures

A B C
35.4 INTRODUCTORY 1993
3.54 DUCT 93
.354 TROD 19
354.0 TORY 99

Question 66: More Formatted IO

Given that A is an array declared with the statement,

INTEGER, DIMENSION(1:8) :: A

give a formatted input statement which will read in the values 1 to A(1), 2 to A(2), etc. from the
following records:

12

34

56

78

Question 67: Formatted File IO

A �le personnel.dat contains records of people's name (up to 15 characters), age (3 digit in-
teger), height (in metres to the nearest centimetre), telephone number (4 digit integer). Write a
program to read the �le and print out the details in the following format:

Height

Name Age (metres) Tel. No.

---- --- ------ --------

Bloggs J. G. 45 1.80 3456

Clinton P. J. 47 1.75 6783

etc.

Question 68: More File IO

Write a program to read the �le produced by the exam marks program and to print a list of students
and their average marks.

28 External Procedures

Fortran 90 allows a class of procedure that is not contained within a PROGRAM or a MODULE | an
EXTERNAL procedure.

This is the old Fortran 77-style of programming and is more clumsy than the Fortran 90 way.

Di�erences:

September 2, 1997 University of Liverpool

28.1. External Subroutine Syntax 241

2 they may be compiled separately,

2 may need an explicit INTERFACE to be supplied to the calling program,

2 can be used as arguments (in addition to intrinsics),

2 should contain the IMPLICIT NONE speci�er.

28.1 External Subroutine Syntax

Syntax of a (non-recursive) subroutine declaration:

SUBROUTINE < procname>[(< dummy args>)]
< declaration of dummy args>

. . .
< declaration of local objects>

. . .
< executable stmts>

. . .
[CONTAINS

< internal procedure de�nitions>]
END [SUBROUTINE [< procname>]]

SUBROUTINEs may contain internal procedures but only if they themselves are not already internal.

! ...

! Executable stmts

! etc.

! Executable stmts

CONTAINS ! Internal Procs

! etc

FUNCTION Int_n(...)

END FUNCTION Int_n

END SUBROUTINE Int_1

SUBROUTINE Ext_1(...)

SUBROUTINE Ext_2(...)

END SUBROUTINE Ext_2

SUBROUTINE Int_1(...)

END SUBROUTINE Ext_1

Figure 42: Schematic Diagram of a Subroutine

Fortran 90 Course Notes File: CourseNotes.ps

242 28. External Procedures

The structure is similar to that of the main PROGRAM unit except a SUBROUTINE can be parameterised
(with arguments) and the type and kind of these must be speci�ed in the declarations section. A SUB-

ROUTINE may include calls to other program units either internal, external or visible by USE association
(de�ned in a module and USEd in the procedure.

28.1.1 External Subroutine Example

An external procedure may invoke a further external procedure,

SUBROUTINE sub1(a,b,c)

IMPLICIT NONE

EXTERNAL sum_sq

REAL :: a, b, c, s

...

CALL sum_sq(a,b,c,s)

...

END SUBROUTINE sub1

calls,

SUBROUTINE sum_sq(aa,bb,cc,ss)

IMPLICIT NONE

REAL, INTENT(IN) :: aa, bb, cc

REAL, INTENT(OUT) :: ss

ss = aa*aa + bb*bb + cc*cc

END SUBROUTINE sum_sq

The principle is the same as for calling an internal procedure except that:

1. whereas an internal procedure has access to the host's declarations (and so inherits, amongst
other things, the IMPLICIT NONE) external procedures do not. An IMPLICIT NONE is needed in
every external procedure.

2. the external procedure should be declared in an EXTERNAL statement. (This is optional but is
good practise.)

28.2 External Function Syntax

Syntax of a (non-recursive) function:

[< pre�x>] FUNCTION < procname>([< dummy args>])
< declaration of dummy args>
< declaration of local objects>

. . .
< executable stmts, assignment of result>

[CONTAINS
< internal procedure de�nitions>]

END [FUNCTION [< procname>]]

September 2, 1997 University of Liverpool

28.2. External Function Syntax 243

here < pre�x>, speci�es the result type. or,

FUNCTION < procname>([< dummy args>])
< declaration of dummy args>
< declaration of procname type>
< declaration of local objects>

. . .
< executable stmts, assignment of result>

[CONTAINS
< internal procedure de�nitions>]

END [FUNCTION [< procname>]]

Functions are very similar to subroutines except that a function should have a type speci�er which
de�nes the type of the result. (The type of the function result can either be given as a pre�x to the
function name or alternatively be given in the declarations area of the code by preceding the function
name (with no arguments or parentheses) by a type speci�er. It is a matter of personal taste which
method is adopted.) For example,

INTEGER FUNCTION largest(i,j,k)

IMPLICIT NONE

is equivalent to,

FUNCTION largest(i,j,k)

IMPLICIT NONE

INTEGER largest

The function name, <procname>, is the result variable so a function must contain a statement which
assigns a value to this name; a routine without one is an error.

The type of an external function must be given in the calling program unit. It is good practise to
attribute this declaration with the EXTERNAL attribute. A valid declaration in the calling program unit
might be,

INTEGER, EXTERNAL :: largest

28.2.1 Function Example

A function is invoked by its appearance in an expression at the place where its result value is needed,

total = total + largest(a,b,c)

The function is de�ned as follows,

INTEGER FUNCTION largest(i,j,k)

INTEGER :: i, j, k

largest = i

IF (j .GT. largest) largest = j

IF (k .GT. largest) largest = k

END FUNCTION largest

Fortran 90 Course Notes File: CourseNotes.ps

244 28. External Procedures

or equivalently as,

FUNCTION largest(i,j,k)

INTEGER :: i, j, k

INTEGER :: largest

...

END FUNCTION largest

The largest value of i, j and k will be substituted at the place where the function call is made. As
with subroutines, the dummy and actual arguments must match in type kind and rank.

More than one function (or the same function more than once) may be invoked in a single statement.
For example,

rezzy = funky1(a,b,c) + funky2(a,b,c)

Care must be taken that the order of execution will not alter the result; aside from operator precedence,
the order of evaluation of a statement in a Fortran 90 program is unde�ned. It is not speci�ed whether
funky1 or funky2 is evaluated �rst; they could even be executed in parallel!

If a function invocation has side-e�ects and it is called twice in the same statement then problems may
occur. To safeguard against this a function invocation should not assign to its arguments, modify any
global variables or perform I/O! A function which obeys these restrictions is termed PURE. The PURE
speci�er will be part of the Fortran 95 language.

28.3 Procedure Interfaces

Fortran 90 has introduced a new feature whereby it is possible, often essential and wholly desirable to
provide an explicit interface for an external procedure. Such an interface provides the compiler with all
the information it needs to allow it to it make consistency checks and ensure that enough information
is communicated to procedures at run-time.

Consider the following procedure,

SUBROUTINE expsum(n, k, x, sum) ! in interface

USE KIND_VALS:ONLY long

IMPLICIT NONE

INTEGER, INTENT(IN) :: n ! in interface

REAL(long), INTENT(IN) :: k,x ! in interface

REAL(long), INTENT(OUT) :: sum ! in interface

REAL(long) :: cool_time

sum = 0.0

DO i = 1, n

sum = sum + exp(-i*k*x)

END DO

END SUBROUTINE expsum ! in interface

The explicit INTERFACE for this routine is,

INTERFACE

SUBROUTINE expsum(n, k, x, sum)

September 2, 1997 University of Liverpool

28.3. Procedure Interfaces 245

USE KIND_VALS:ONLY long

INTEGER :: n

REAL(long), INTENT(IN) :: k,x

REAL(long), INTENT(OUT) :: sum

END SUBROUTINE expsum

END INTERFACE

An interface declaration, which is initiated with the INTERFACE statement and terminated by END

INTERFACE, gives the characteristics (attributes) of both the dummy arguments (for example, the
name, type, kind and rank and the procedure (for example, name, class and type for functions). (The
INTENT attribute should also be given | this has not been covered yet see Section 17.7 for details.)
The USE statement is necessary so that the meaning of long can be established. An interface cannot
be used for a procedure speci�ed in an EXTERNAL statement (and vice-versa).

The declaration can be thought of as being the whole procedure without the local declarations (for
example, cool time,) and executable code! If this interface is included in the declarations part of
a program unit which calls expsum, then the interface is said to be explicit. Clearly, an interface
declaration must match the procedure that it refers to.

It is is generally a good idea to make all interfaces explicit.

An interface is only relevant for external procedures; the interface to an internal procedure is always
visible as it is already contained within the host. Interfaces to intrinsic procedures are also explicit
within the language.

An interface only contains:

2 the SUBROUTINE or FUNCTION header,

2 (if not included in the header) the FUNCTION type,

2 declarations of the dummy arguments (including attributes),

2 the END SUBROUTINE or END FUNCTION statement

Interfaces are only ever needed for EXTERNAL procedures.

Question 69: Interfaces

What is the interface of the following procedure?

SUBROUTINE SGETRI_F90(A, IPIV, INFO)

USE LA_PRECISION, ONLY:WP

IMPLICIT NONE

REAL(KIND=WP), INTENT(INOUT), DIMENSION(:,:) :: A

REAL(KIND=WP), ALLOCATABLE, DIMENSION(:,:) :: WORK

INTEGER, INTENT(IN), DIMENSION(:) :: IPIV

INTEGER, INTENT(OUT) :: INFO

INTEGER :: N

INTEGER :: ILAENV

EXTERNAL ILAENV

INTRINSIC MIN, MATMUL

INFO = 0

Fortran 90 Course Notes File: CourseNotes.ps

246 28. External Procedures

N = SIZE(A,1)

IF (SIZE(A,2) /= N) THEN

INFO = -1

ELSE IF (SIZE(IPIV,1) /= N) THEN

INFO = -2

ENDIF

IF(N.EQ.0) RETURN

....

END SUBROUTINE SGETRI_F90

28.3.1 Interface Example

The following program includes an explicit interface,

PROGRAM interface_example

IMPLICIT NONE

INTERFACE

SUBROUTINE expsum(N,K,X,sum)

INTEGER, INTENT(IN) :: N

REAL, INTENT(IN) :: K,X

REAL, INTENT(OUT) :: sum

END SUBROUTINE expsum

END INTERFACE

REAL :: sum

...

CALL expsum(10,0.5,0.1,sum)

...

END PROGRAM interface_example

The above interface includes information about the number, type, kind and rank of the dummy argu-
ments of the procedure expsum.

Using an INTERFACE provides for better optimisation and type checking, and allows separate compila-
tion to be performed.

28.4 Required Interfaces

Explicit interfaces are mandatory if an EXTERNAL procedure:

2 has dummy arguments that are assumed-shape arrays, pointers or targets.

This is so the compiler can �gure out what information needs to be passed to the procedure,
for example, the rank, type and bounds of an array whose corresponding dummy argument is an
assumed-shape array, (see Section 18.2), or the types and attributes of pointers or targets.

2 has OPTIONAL arguments.

The compiler needs to knows the names of the arguments so it can �gure out the correct
association when any of the optional arguments are missing.

2 is an array or pointer valued result (functions).

The compiler needs to know to pass back the function result in a di�erent form from usual.

September 2, 1997 University of Liverpool

28.5. Procedure Arguments 247

2 contains an inherited LEN=* length speci�er (character functions).

The compiler needs to know to pass string length information to and from the procedure.

and when the reference:

2 has a keyword argument.

Same reasons as optional case above.

2 is a de�ned assignment.

Extra information is required.

2 is a call to the generic name.

Extra information is required.

2 is a call to a de�ned operator (functions).

Extra information is required.

Recall that a procedure cannot appear both in an INTERFACE block and in an EXTERNAL statement in
the same scoping unit.

Question 70: Simple External Procedure

Write a program that �lls an array of a user speci�ed size with random real numbers (in the range 0 -
1). This program should then call an EXTERNAL procedure which reports on the frequency of numbers
less than 0.5 in this array. Use assumed-shape arrays in the procedure. [You may �nd the COUNT

intrinsic useful in this question.]

28.5 Procedure Arguments

If an external procedure is to be used as an argument it needs to be declared at the call site with an
INTRINSIC or EXTERNAL attribute.

2 INTRINSIC attribute | for in-built external procedures.

2 EXTERNAL attribute | for external or dummy procedures.

Internal procedures are forbidden to appear as arguments.

28.5.1 The INTRINSIC Attribute

A name with the intrinsic attribute represents an intrinsic procedure and allows it to be used as an
actual argument. (Note: the speci�c, not generic, procedure name should be used. Many intrinsic
functions can be referred to be two di�erent names, the speci�c and the generic names. The Fortran 90
intrinsic functions are multiply de�ned one for each argument of a di�erent intrinsic type, (for example,
REAL, INTEGER and COMPLEX). Each of these di�erent functions has a di�erent name, (for example,
ABS, IABS and CABS), corresponding to the di�erent argument types. All of these speci�c names also
belongs to a generic name class (in this case, ABS) and can be accessed by using the generic name
instead of the speci�c name. The compiler is able to look at the type of the argument and decide which

Fortran 90 Course Notes File: CourseNotes.ps

248 28. External Procedures

speci�c function should be referenced | this is called generic resolution. If a procedure is to be passed
as an actual procedure argument the speci�c name must be used because the procedure reference will
not have any arguments at the point where it is passed so the generic reference will not be able to be
resolved.) A procedure may be attributed as part of a type declaration or in an INTRINSIC statement.

For example,

INTRINSIC MVBITS

REAL, INTRINSIC :: ASIN

declares ASIN to be an intrinsic function and will allow it to be used as an actual argument. (INTRIN-
SIC and EXTERNAL statements cannot currently contain the :: separator. This is a language anomily
and will be removed in Fortran 95.)

The following procedure call would be valid,

CALL subbo(MVBITS, ASIN)

where the de�nition of subbo is as follows,

SUBROUTINE subbo(sub,fun)

IMPLICIT NONE

EXTERNAL sub

REAL, EXTERNAL :: fun

...

PRINT*, fun(0.4)

CALL sub

...

END SUBROUTINE subbo

It can be seen that the dummy procedure arguments can be invoked in the same way as regular
procedures. Note how dummy procedure argument are always declared as EXTERNAL even if they are
intrinsic functions. This is because, in the above case, fun is not the name of an intrinsic procedure.

28.5.2 The EXTERNAL Attribute

A name with the external attribute represents an external procedure or a dummy procedure and allows
it to be used as an actual argument. (Note: the speci�c, not generic, procedure name should be
used.) As Fortran 90 allows EXTERNAL (user de�ned) procedures to have the same names as INTRIN-
SIC procedures it is often necessary to be able to di�erentiate between two references. If an intrinsic
procedure name is used in an EXTERNAL statement then only the external procedure is visible in that
scope; the intrinsic becomes unavailable. A procedure may be attributed as part of a type declaration
or in an EXTERNAL statement.

For example,

EXTERNAL My_Subby

INTEGER, EXTERNAL :: My_Funky

INTEGER, EXTERNAL :: IABS

September 2, 1997 University of Liverpool

28.5. Procedure Arguments 249

My Subby and My Funky are declared to be a user written external subroutine and integer function
respectively. Both these procedures can now be used as actual arguments in procedure invocations.
IABS is also declared to be a user-written external function and will also be allowed to appear an actual
argument. The intrinsic function IABS will become unavailable in the current scoping unit. (If an
intrinsic procedure name is used in an EXTERNAL statement then only the external procedure of that
name is visible in that scope; the intrinsic becomes unavailable.)

28.5.3 Procedure Arguments Example

The following example demonstrates the use of procedures as arguments:

PROGRAM main

IMPLICIT NONE

INTRINSIC ASIN

REAL, EXTERNAL :: my_sin

EXTERNAL diffo1

CALL subby(ASIN,my_sin,diffo1,SIN(0.5))

END PROGRAM

SUBROUTINE subby(fun1,fun2,sub1,x)

IMPLICIT NONE

REAL, INTENT(IN) :: x

REAL, EXTERNAL :: fun2, fun1

EXTERNAL sub1

PRINT*, fun1(x), fun2(x)

CALL sub1(fun2(x),fun1,x)

END SUBROUTINE subby

SUBROUTINE diffo1(y,f,x)

IMPLICIT NONE

REAL, INTENT(IN) :: x,y

REAL, EXTERNAL :: f

print*, "Diffo1 = ",y-f(x)

END SUBROUTINE diffo1

REAL FUNCTION my_sin(x)

...

END FUNCTION my_sin

It can be seen that when a procedure is passed as an actual argument it is merely passed by referencing
its name, if it is a function which is supplied with arguments, for example, SIN(0.5), then it will be
evaluated before the call is made.

The above example raises a few points:

2 INTRINSIC ASIN speci�es that ASIN refers to the Fortran 90 intrinsic function and allows it to
be used as an actual argument which corresponds to a dummy procedure, ASIN is the speci�c
name of the generic function SIN,

2 REAL, EXTERNAL :: my sin declares my sin to be a user-de�ned real valued function which
can be used as an actual argument which corresponds to a dummy procedure,

Fortran 90 Course Notes File: CourseNotes.ps

250 29. Object Initialisation

2 EXTERNAL diffo1 declares diffo1 to be an external subroutine and allows it to be used as an
actual argument which corresponds to a dummy procedure,

2 diffo1 is argument associated with sub1, when sub1 is invoked it is really diffo1 that is being
invoked.

2 when sub1 / diffo1 is called the �rst argument is evaluated (fun2(x)) and the second and
third arguments are passed across.

2 dummy and actual procedure arguments must match in type, kind, rank and number of argu-
ments,

2 some intrinsic functions cannot be used as dummy procedure arguments, these include LLT and
type conversion functions such as REAL, (see the Fortran 90 standard for a full list,)

2 must always use the speci�c name of any intrinsic procedure, i.e., must use ASIN and not SIN.

Question 71: Functions as dummy arguments

Write a subroutine that accepts a function with one real argument (user de�ned or intrinsic), a
start value i1, end value i2 and stride i3 and prints out the value of the function at each point de�ned
by the sequence, i1; i1 + i3; i1 + 2i3; ::. Demonstrate its functionality by producing tables for two
intrinsic and two user de�ned functions.

29 Object Initialisation

29.1 DATA Statement

In Fortran 90 the main use of the DATA statement is to allow initialisation of sections of arrays where
the facilities of array constructors and assignment in the array declaration make this di�cult. A DATA

statement can be placed anywhere in the relevant program unit but its is common practice to place it
amongst the declarations. It is `executed' once (conceptually in parallel) on the �rst invocation of the
procedure just before the �rst executable statement.

DATA statements are good for initialising odd shaped sections of arrays.

The syntax is as follows,

DATA < var1-list>/< data1-list>/, ...< varn-list>/< datan-list>/

The number of constants in each < data-list > must be equal to the number of variables / array
elements in the corresponding < var-list>. Each < data-list> can only contain constants or structure
(user-de�ned type) constructors, plus implied-do loop speci�ers and repetition speci�ers.

Any object initialised by the DATA statement has the SAVE attribute

29.1.1 DATA Statement Example

As an example, consider initialising a 1000� 1000 array with all the edge values equal to 1 and with
the rest of the array zero. This is very hard to do in an initialisation statement, it can be done using a

September 2, 1997 University of Liverpool

29.2. Data Statement | Implied DO Loop 251

RESHAPE and a series of implied-do loops, but the whole array must be initialised in one go. The DATA
statement allows this operation to be spread over a number of lines.

REAL :: matrix(100,100)

DATA matrix(1, 1:100) / 100*1.0 / ! top row

DATA matrix(100, 1:100) / 100*1.0 / ! bot row

DATA matrix(2:99, 1) / 98*1.0 / ! left col

DATA matrix(2:99, 100) / 98*1.0 / ! right col

DATA matrix(2:99, 2:99) / 9604*0.0 / ! interior

The expression 100*1.0 means \100 occurrences of 1.0", the * is the repetition speci�er and the
number of repeats must be a scalar integer literal (not a variable). In this context it cannot be
confused with the multiplication operator because such operators are not allowed in a DATA statement.
A list of comma separated initialisations is also allowed, for example,

DATA matrix(1, 1:100) / 50*1.0, 50*2.0 / ! top row

A further example shows how initialisation in an assignment statement when it can be done is neater
than a DATA statement,

INTEGER :: count,I,J

REAL :: inc, max, min

CHARACTER(LEN=5) :: light

LOGICAL :: red, blue, green

DATA count/0/, I/5/, J/100/

DATA inc, max, min/1.0E-05, 10.0E+05, -10.0E+05/

DATA light/'Amber'/

DATA red/.TRUE./, blue, green/.FALSE.,.FALSE./

is the same as

INTEGER :: count=0, I=5, J=100

REAL :: inc=1.0E-05, max=10.0E+05, min=-10.0E+05

CHARACTER(LEN=5) :: light='Amber'

LOGICAL :: red=.TRUE., blue=.FALSE., green=.FALSE.

29.2 Data Statement | Implied DO Loop

In a DATA statement the < var-list> may be speci�ed by means of an implied-DO. Initialising a matrix
to have a given constant value, say, 5.0 on the diagonal and zero everywhere else is simple to do using
this method.

The object section can be speci�ed by a tight loop which is more expressive than array syntax would
allow:

REAL :: diag(100,100)

DATA (diag(i,i), i=1,100) / 100*5.0 / ! sets diagonal elements

DATA ((diag(i,j),diag(j,i),j=i+1,100),i=1,100) / 9900*0.0 /

! sets the upper and lower triangles

Fortran 90 Course Notes File: CourseNotes.ps

252 30. Handling Exceptions

The �rst DATA statement containing the following implied-DO, (diag(i,i), i=1,100), has the same
e�ect as if diag(i,i)=5.0 were nested in a DO i=1,100 DO-loop. The second contains a nested
implied-DO and behaves as if the second loop expression i= is the outermost DO of a set of two nested
loops, in other words, its is like,

DO i=1,100

DO j=i+1,100

diag(i,j) = 0.0

diag(j,i) = 0.0

END DO

END DO

so the j loop varies the quickest meaning that the following elements are selected in the given order,

diag(1,2), diag(2,1), diag(1,3), diag(3,1), ...,

diag(2,3), diag(3,2), ...

30 Handling Exceptions

30.1 GOTO Statement

The GOTO statement:

2 is a powerful but undisciplined branching statement;

2 can be used to create jumps to almost anywhere in a program unit;

2 can be dangerous;

2 can lead to unstructured code (logical spaghetti).

2 is very useful in exceptional circumstances such as jumping out of heavily nested structures.

The basic syntax is

GOTO < numeric-label>

The label must exist, be in the same scoping unit as the statement and be executable. This label
cannot be a construct name.

GOTO should not be used for simulating other available control structure such as loops | use the
purpose-designed syntax.

30.1.1 GOTO Statement Example

Consider the following example of an atrocious use of the GOTO statement,

September 2, 1997 University of Liverpool

30.2. RETURN and STOP Statements 253

GOTO 10 ! jump forward

23 CONTINUE

i = i - 1

IF (i .eq. 0) GOTO 99

10 PRINT*, "Line 10"

69 j = j - 1 ! loop

...

IF (j .ne. 0) GOTO 69

GOTO 23 ! jump back

099 CONTINUE

The code fragment demonstrates forward and backward transfer of control and the simulation of a
loop. The whole example could be be rewritten in a far neater and structured way.

The best use of GOTO statements is in jumping out of a heavily nested structure when an unexpected
event occurs such as a potential divide by zero.

30.2 RETURN and STOP Statements

The RETURN and STOP statements can be used to program exceptions in procedures.

RETURN transfers control to the last line of the procedure (and then back to the calling program unit)
and serves as a quick exit from the middle of a procedure. It is especially useful when things have gone
wrong and the procedure execution needs to be aborted.

STOP causes the program to terminate immediately. A string or number may be written to the standard
output when this happens. STOP is, again, useful for exceptions, however, this statement could cause
great problems on a distributed memory machine if some processors just stop without cleaning up!
STOP is often used as status report which comments on the success or failure of a program execution.

For example, the following will exit from the subroutine if there is insu�cient space to allocate the
array A,

SUBROUTINE sub(ierror)

INTEGER, INTENT(OUT) :: ierror

...

ALLOCATE(A(100),STAT=ierror)

IF (ierror>0) THEN

PRINT*, 'memory fault'

RETURN

END IF

...

END SUBROUTINE

The same e�ect as that of the RETURN statement could be obtained by putting a label on the END

statement and using a GOTO statement to pass control directly to this label.

In the above example STOP could be used instead of RETURN:

STOP 'stopped in sub'

the string is optional or can be a literal integer constant of up to 5 digits. It is output upon execution
of STOP at which time execution of the program terminates.

Fortran 90 Course Notes File: CourseNotes.ps

254 31. Fortran 95

31 Fortran 95

Fortran 95 will be the new Fortran Standard. It will include the following:

2 FORALL statement and construct

FORALL(i=1:n:2,j=1:m:2)

A(i,j) = i*j

END FORALL

simultaneously assigns i*j to each array element A(i,j).

2 nested WHERE constructs,

2 user de�ned ELEMENTAL procedures, this will allow the ELEMENTAL keyword to be added to
procedure de�nitions.

2 PURE procedures, this will allow the PURE keyword to be added to procedure de�nitions and states
that the procedure is \side-e�ect free". ELEMENTAL procedures are PURE.

2 user-de�ned functions in initialisation expressions.

2 automatic deallocation of arrays, no need to deallocate arrays before leaving a procedure.

2 improved object initialisation, pointers can be initialised to be disassociated.

2 remove conicts with IEC 559 (IEEE 754/854) (oating point arithmetic standard).

2 more obsolescent features, for example, �xed source form, assumed sized arrays, CHARACTER*<
len> declarations, statement functions.

2 language tidy-ups and ambiguities (mistakes).

The full content of Fortran 95 is not yet �nalised and may change.

31.1 Rationale (by Craig Dedo)

The reasons for the changes are laid out below.

31.1.1 FORALL

The FORALL statement and construct and PURE procedures were added to Fortran 95 to allow Fortran 95
programs to execute e�ciently in parallel on multi-processor systems. These features allow the majority
of programs coded in High Performance Fortran (HPF) to run on a standard conforming Fortran 95
processor with little change. Adding these features to Fortran 95 does not imply that a particular
Fortran 95 processor is multi-processor.

The purpose of the FORALL statement and construct is to provide a convenient syntax for simultaneous
assignments to large groups of array elements. The multiple assignment functionality it provides is very
similar to that provided by the array assignment statement and the WHERE construct in Fortran 90.
FORALL di�ers from these constructs in its syntax, which is intended to be more suggestive of local
operations on each element of an array, and in its generality, which allows a larger class of array sections

September 2, 1997 University of Liverpool

31.1. Rationale (by Craig Dedo) 255

to be speci�ed. In addition, a FORALL may invoke user-de�ned functions on the elements of an array,
simulating Fortran 90 elemental function invocation (albeit with a di�erent syntax).

FORALL is not intended to be a completely general parallel construct; for example, it does not express
pipelined computations or multiple-instruction multiple-data (MIMD) computation well. This was
an explicit design decision made in order to simplify the construct and promote agreement on the
statement's semantics.

31.1.2 Nested WHERE Construct

The WHERE construct was extended in order to provide for syntactic regularity with the FORALL con-
struct. The FORALL construct allows for nested FORALL constructs.

Early implementation of some High Performance Fortran (HPF) processors included the nested WHERE

construct. Use of these processors showed that the feature provided real value to customers.

31.1.3 PURE Procedures

The purpose of PURE procedures is to allow a processor to know when it is safe to implement a
section of code as a parallel operation. The freedom from side e�ects of a pure function assists the
e�cient implementation of concurrent execution and allows the function to be invoked concurrently in
a FORALL without such undesirable consequences as nondeterminism. It also forces some error checking
on functions used in a FORALL construct.

31.1.4 Elemental Procedures

ELEMENTAL procedures provide the programmer with more powerful expressive capabilities and the
processor with additional opportunities for e�cient parallelisation.

Extending the concept of elemental procedures from intrinsic to user-de�ned procedures is very much
analogous to, but simpler than, extending the concept of generic procedures from intrinsic to user-
de�ned procedures. Generic procedures were introduced for intrinsic procedures in Fortran 77 and
extended to user-de�ned procedures in Fortran 90. Elemental procedures were introduced for intrinsic
procedures in Fortran 90 and, because of their usefulness in parallel processing, it is quite natural that
they be extended to user-de�ned procedures in Fortran 95. ELEMENTAL procedures are PURE.

31.1.5 Improved Initialisations

A signi�cant number of useful applications will be facilitated by the ability to perform more complicated
calculations when specifying data objects. Allowing a restricted class of nonintrinsic functions in certain
speci�cation expressions achieves this goal.

31.1.6 Automatic Deallocation

Automatic deallocation of allocatable arrays provides a more convenient and less error prone method of
avoiding memory leaks by removing the burden of manual storage deallocation for allocatable arrays.

Fortran 90 Course Notes File: CourseNotes.ps

256 31. Fortran 95

The \unde�ned" allocation status of Fortran 90 meant that an allocatable array could easily get into a
state where it could not be further used in any way whatsoever. It could not be allocated, deallocated,
referenced, or de�ned. The result was unde�ned if the array was used as the argument to the ALLOCATED
function. Removal of this status provides the user with a safe way of handling unSAVEd allocatable
arrays and permits use of the ALLOCATED intrinsic function to discover the current allocation status of
the array at any time.

31.1.7 New Initialisation Features

The prime motivation for adding a means to specify default initialisation for objects of derived type is
a desire to eliminate memory leakage, i.e., situations in which allocated memory becomes inaccessible.
This can occur in applications which manipulate objects of derived type with pointer components.
Most memory leakage can be avoided if it is possible to specify that pointers be created with an initial
status of disassociated.

This standard provides a new intrinsic function, NULL, with a single optional argument. NULL allows
the initial status of a pointer to be speci�ed as disassociated in declarations, structure constructors, or
type de�nitions.

Several alternatives were considered and rejected for a variety of reasons. Most of these reasons involve
the problem of disambiguating references to generic procedures; i.e., when a program invokes a generic
procedure, which speci�c procedure is supposed to be invoked? Completely de�ning a pointer object
before using it does not help with the disambiguation problem. Creating a .NULL. constant does not
provide any way to specify the type and type parameters of the pointer that is returned. A NULL

function with a MOLD argument provides these needed capabilities.

This language extension does not completely solve the memory leakage problem; for that, an automatic
destructor is needed which would be invoked for local pointers and structures with pointer components
when the procedure in which they are created terminates. Such a facility is not included in this standard;
it could be provided automatically by a processor that strove to conserve allocatable memory.

Automatic pointer destructors were not included in this standard because the consequences of inac-
cessible pointers are not as serious as they are with allocatable arrays which become inaccessible. If a
local, unSAVEd pointer is not deallocated and the program exits the procedure in which it is de�ned,
the storage is not recoverable but the pointer is reusable.

For reasons of determinacy and portability, an object for which default initialisation is speci�ed is not
allowed to appear in a DATA statement. In traditional implementations, a compiler passes initialisation
information for nondynamic variables to a loader, which is frequently designed to handle object code
from several di�erent languages. It would be di�cult to guarantee that initialisation in a DATA statement
would override the default initialisation speci�ed in a type de�nition.

31.1.8 Remove Conicts With IEC 559

Edits to sections 4.3.1 and 7.1.7 removed conicts in Fortran 90 with the IEC 559 (IEEE 754/854)
standard. Previous Fortran standards appeared to prohibit certain numeric values and numeric opera-
tions which were valid when using IEC 559 arithmetic. Fortran 90 requires that the value of a positive
zero be the same as that of a negative zero, whereas IEC 559 requires that they be di�erent. Fortran 90
prohibits any mathematically invalid operation, whereas IEC 559 requires such operations to produce
+Inf, -Inf or NaNs.

These conicts were removed to allow processors the ability to implement more of the IEC 559 arithmetic
model without violating the Fortran standard.

September 2, 1997 University of Liverpool

31.1. Rationale (by Craig Dedo) 257

31.1.9 Minimum Width Editing

Certain edit descriptors have been extended to allow formatted output of numeric values, while minimis-
ing the amount of \white spac"e produced. This extension permits more information to be presented
on a limited width display device (e.g. terminal), without concern about overowing a user speci�ed
�eld width. Allowing a zero �eld width to be speci�ed for the I, B, O, Z and F edit descriptors
provides this functionality. A �eld width speci�cation of zero always speci�es a minimum �eld width;
it never speci�es suppression of data output or an actual �eld width of zero.

31.1.10 Namelist

Although not described here, namelist input has been extended to allow comments to follow one or
more object name / value pairs on a line. This allows users to document how a namelist input �le
is structured, which values are valid, and the meaning of certain values. Each line in the namelist
input may contain information about name / value pairs. This additional information may improve the
documentation of the input �le.

31.1.11 CPU TIME Intrinsic Subroutine

A new intrinsic subroutine CPU TIME has been added. This feature is provided to allow the assessment
of which processor resources a piece of code consumes during execution. This could be the execution
of the whole program or only a small part of it. Additional purposes could be comparing di�erent
algorithms on the same computer or trying to discover which parts of a calculation on a computer are
most expensive.

31.1.12 MAXLOC and MINLOC Intrinsics

Fortran 90 speci�ed the MAXLOC and MINLOC intrinsics with only ARRAY and MASK arguments. The
High Performance Fortran (HPF) group added the DIM argument between the original two arguments
for consistency with the MAXVAL and MINVAL intrinsics. An incompatibility between Fortran 90 and
HPF results unless MAXLOC and MINLOC are speci�ed as generic interfaces, each with two speci�c
interfaces: the �rst matching Fortran 90 and the second adding a non-optional DIM argument as the
second argument. The Fortran Standards Committee decided that Fortran 95 should allow the DIM

and MASK arguments to be speci�ed in either order. For consistency, this provision for DIM and MASK

to be speci�ed in either order was extended to the other intrinsics which have the same arguments.
These intrinsics are MAXVAL, MINVAL, PRODUCT, and SUM.

31.1.13 Deleted Features

Any deleted features will appear in an Annex to the standard. The current list of deleted features is:

2 real and double precision DO control variables,

2 branching to an END IF from outside its block,

2 PAUSE statement,

2 ASSIGN, assigned GOTO, assigned FORMAT speci�ers,

Fortran 90 Course Notes File: CourseNotes.ps

258 32. High Performance Fortran

2 cH edit descriptor,

2 CHARACTER*< len> style declarations.

31.1.14 New Obsolescent Features

There are some new obsolescent features to be added to those brought over from Fortran 90:

2 computed GOTO,

2 statement functions,

2 DATA statements amongst executables,

2 assumed-length character functions,

2 �xed form source,

2 assumed-size arrays (i.e. with '*' in the last dimension).

31.1.15 Language Tidy-ups

Language tidy-ups are mainly concerned with ironing out ambiguities in the Fortran 90 standard and
adding extra text to make matters clearer.

32 High Performance Fortran

[Some of this section has been taken from the High Performace Fortran Forum Draft Speci�cation v1.0.
Using sections of this report is encouraged by the HPF so long as the following notice is published:

c1993 Rice University, Houston Texas. Permission to copy without fee all or part of
this material is granted, provided the Rice University copyright notice and the title of this
document appear, and notice is given that copying is by permission of Rice University.

]

It is widely recognised that parallel computing represents the only plausible way to continue to increase
the processor power that is available to programmers and engineers. In order that this power be
embraced by the whole scienti�c community, the method by which the power is harnessed must be
made much more accessible.

On current parallel distributed memory architectures, the language systems provided require the pro-
grammer to insert explicit message passing between communicating programs each of which knows
only about a subset of the data, even if this data represents a single logical entity such as an array.
This approach has often been compared to programming early digital computers in the days before
high level languages were developed | it is awkward, time consuming and error prone. Put succinctly:

Message Passing is the assembler language of parallel programming.

September 2, 1997 University of Liverpool

32.1. Compiler Directives 259

High Performance Fortran (HPF) was developed to help bring distributed memory systems into the
general scienti�c community. Using HPF, programmers can write data parallel programs in much the
same way as they write `normal' sequential high level programs.

Loosely, HPF contains by data distribution directives which allow the user to specify to the compiler
how to distribute a single object across the available processors. This distribution is done by the
compiler transparently to the programmer, who can manipulate distributed objects as a whole even
though they may be partitioned between, say, 100 processors. Thus, HPF programs are much easier
to write than are message-passing programs.

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation features of
Fortran 90 make it a natural base for HPF. The new HPF language features fall into four categories
with respect to Fortran 90:

2 New directives:

The new directives are structured comments that suggest implementation strategies or assert facts
about a program to the compiler. They may a�ect the e�ciency of the computation performed,
but do not change the value computed by the program. The form of the HPF directives has been
chosen so that a future Fortran standard may choose to include these features as full statements
in the language by deleting the initial comment header.

2 New language syntax:

Some new language features, for example, FORALL, WHERE, new intrinsics, PURE and ELEMENTAL

procedures and the intrinsic functions, which were made �rst-class language constructs rather
than comments because they a�ect the interpretation of a program.

2 Library routines:

The HPF library of computational functions de�nes a standard interface to routines that have
proven valuable for high performance computing including additional reduction functions, com-
bining scatter functions, pre�x and su�x functions, and sorting functions.

2 Language restrictions:

The language has been restricted in a very small number of areas.

Storage and sequence association is immensly complicated when arrays are stored non-continuously
and even on totally separate processors. (If an HPF program is being run over a wide area net-
work (WAN) then rather than occupying two adjacent storage locations in memory, two elements
of an array may be separated by 1,000's of miles!) Full support of Fortran sequence and storage
association is simply not possible with the data distribution features of HPF. Some restrictions
on the use of sequence and storage association are de�ned. These restrictions may in turn re-
quire insertion of HPF directives into standard Fortran 90 programs in order to preserve correct
semantics.

32.1 Compiler Directives

HPF includes features which describe the collocation of data (ALIGN) and the partitioning of data
among memory regions or abstract processors (DISTRIBUTE). Compilers may interpret these annota-
tions to improve storage allocation for data, subject to the constraint that semantically every data
object has a single value at any point in the program. In all cases, users should expect the compiler to
arrange the computation to minimise communication while retaining parallelism.

The model is that there is a two-level mapping of data objects to memory regions, referred to as
\abstract processors". Data objects (typically array elements) are �rst aligned relative to one another;

Fortran 90 Course Notes File: CourseNotes.ps

260 32. High Performance Fortran

this group of arrays is then distributed onto a rectilinear arrangement of abstract processors. (The
implementation then uses the same number, or perhaps some smaller number, of physical processors
to implement these abstract processors. This mapping of abstract processors to physical processors is
language-processor dependent.)

Arrays are aligned with a template, that is to say mapped onto a meshed object. Any number of
arrays can be mapped to a template. The idea is to align array elements which are used in the same
assignment statement, this will minimise communication between processors. Once all the arrays have
been aligned, the template is distributed amongst the processors (declared in a PROCESSORS directive).
In each dimension the distribution can be:

2 BLOCK or BLOCK(<m>)| if the template has t items and these are to be distributed amongst
p processors then each processor receives dte=dpe elements. It is also possible to specify how
many elements each processor received by supplying the optional <m> parameter.

2 CYCLIC or CYCLICLBR<m>)| the template items are distributed to the processor either one
element at a time or <m> elements at a time in a round robin fashion. Thus the �rst processor
gets the �rst (<m>) element(s) of the template. If any array elements are aligned with these
particular template items then they will be assigned to the processor. The second processor
will get the next (<m>) element(s) of the template and so on. When the last processor has
been given template items the whole process wraps around and the �rst processor receives more
template items until the template is exhausted. CYCLIC distribution is often used to ensure load
balancing.

32.2 Visualisation of Data Directives

Consider the following data layout directives:

!HPF$ PROCESSORS P(5,7)

!HPF$ TEMPLATE T(20,20)

INTEGER, DIMENSION(6,10) :: A

!HPF$ ALIGN A(J,K) WITH T(J*3,K*2)

!HPF$ DISTRIBUTE T(CYCLIC(2),BLOCK(3)) ONTO P

These directives will cause the data distribution depicted in Figure 43. It can be seen that the array, A,
is aligned to the template with a stride, 3 in the �rst dimension and 2 in the second; every processor
owns part of the array although it can be seen that, owing to the CYCLIC(2) distribution in dimension
1, the set of array items that a particular processor owns cannot be described by a linear function or
a subscript-triplet:

September 2, 1997 University of Liverpool

32.2. Visualisation of Data Directives 261

Array item

A(6,10)

A(1,1)

A(6,1)

Template item Processor 11

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 6 7

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 6 7

Figure 43: Alignment of a 2-D Array with a 2-D Template and Distribution onto a 2-D Processor Grid.

P(1,1) owns A(4,1)

P(2,1) owns A(1,1)

P(3,1) owns A(2,1) and A(5,1)

: : :

P(1,2) owns A(4,2) and A(4,3)

P(2,2) owns A(1,2) and A(1,3)

P(3,2) owns A(2,2), A(2,3), A(5,2) and A(5,3)

: : :

It is for this reason that CYCLIC(M) distribution results in an ine�cient implementation | the compiler
must describe the elements that a particular processor owns by a union of subscript triplets instead of

Fortran 90 Course Notes File: CourseNotes.ps

262 32. High Performance Fortran

the single subscript triplet which can be used for all the other distributions. The target code will have
an extra nested loop for each for each dimension with a CYCLIC(M) distribution.

The statement,

A(2,1) = A(5,1)

causes no communication because both elements are owned by the same processor but

% A(2,1) = A(2,2)

does generate a communication along a row of processors (between P1 and P2 on row 2).

The directives:

!HPF$ PROCESSORS P(7)

!HPF$ TEMPLATE T(20,20)

INTEGER, DIMENSION(6,10) :: A

!HPF$ ALIGN A(J,K) WITH T(J*3,K*2)

!HPF$ DISTRIBUTE T(*,BLOCK(3)) ONTO P

demonstrate the collapsing of a template dimension so that a 2 dimensional template can be distributed
onto a 1 dimensional processor, see Figure 44.

September 2, 1997 University of Liverpool

32.2. Visualisation of Data Directives 263

Array item Processor 1Template item

1 2 3 4 5 6 7

7654321

1

A(6,1)

A(1,1)

A(6,10)

Figure 44: Alignment of a 2-D Array with a 2-D Template and Distribution onto a 1-D Processor
Chain.

P(1) owns A(:,1)

P(2) owns A(:,2) and A(:,3)

: : :

P(6) owns A(:,8) and A(:,9)

P(7) owns A(:,10)

It is also possible to collapse one or more dimensions of an array onto a template, see Figure 45:

Fortran 90 Course Notes File: CourseNotes.ps

264 32. High Performance Fortran

Array item

A(1,1)

Template item Processor 1

1 2 3 4 5 6 7

1 2 3 4 5 6 7

A(6,1) A(6,10)

1

Figure 45: Alignment of a 2-D Array with a 1-D Template and Distribution onto a 1-D Processor
Chain.

!HPF$ PROCESSORS P(7)

!HPF$ TEMPLATE T(20)

INTEGER, DIMENSION(6,10) :: A

!HPF$ ALIGN A(*,K) WITH T(K*2)

!HPF$ DISTRIBUTE T(*,BLOCK(3)) ONTO P

This data distribution results in the same array elements being present on the same processors as the
previous mapping.

September 2, 1997 University of Liverpool

265

33 ASCII Collating Sequence

The following table represents the ASCII character set. At the top of the table are hexadecimal digits
(0{7), and to the left of the table are the digits (0{F). To determine the hexadecimal value of a given
ASCII character, use the hexadecimal value that corresponds to the row in the \units" position and the
digits that corresponds to the column in the \16's" position. For example, the value of the character
representing the tilde is 7E.

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k f
C FF FS , < L \ l |

D CR GS - = M] m g
E SO RS . > N ^ n ~

F SI US / ? O o DEL

ASCII Collating Sequence

Fortran 90 Course Notes File: CourseNotes.ps

266 REFERENCES

where,

NUL Null DLE Data link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledgement
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tab EM End of medium
LF Line Feed SUB Substitute
VT Vertical Tab ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
SI Shift In US Unit Separator
SP Space DEL Delete

References

[1] Anonymous. Fortran. ISO/IEC 1539, 1991.

[2] CSEP. Fortran 90 and Computational Science. Technical report, Oak Ridge National Laboratory,
1994.

[3] S. Davis. C++ Programmer's Companion. Addison-Wesley, 1993.

[4] High Performance Forum. High Performance Fortran language speci�cation, version 1.1. Technical
report, Rice University, May 1993.

September 2, 1997 University of Liverpool

